MINISTRY OF PUBLIC HEALTH OF UKRAINE NATIONAL UNIVERSITY OF PHARMACY

TOPICAL ISSUES OF NEW DRUGS DEVELOPMENT

Vol. 1

April 20, 2017 Kharkiv

> Kharkiv NUPh 2017

SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF 3-ALKYLSUBSTITUTED 4-ARYLAMINO-2-METHYLQUINOLINES

Nguyen Thien Trang, Kobzar N. P., Kiz O. V. Scientific supervisor: assoc. prof. Podolsky I. M. National University of Pharmacy, Kharkiv, Ukraine medchem@nuph.edu.ua

Introduction. The research of novel classes of antibacterial drugs actual more that ever due to the problem of antimicrobial resistance occurrence. This problem has rapidly escalated and became threatening.

Aim. Synthesis and study of the antimicrobial properties of novel 3-alkylsubstituted 4-arylamino-2-methylquinolines were the aim this research work.

Materials and methods. The target 3-alkyl-4-arylamino-2-methylquinolines II were synthesized by reaction of 3-alkyl-4-chloro-2-methylquinolin-4-ones Ia with substituted anilines in ethanol under the reflux in the presence of equimolar amounts of hydrochloric acid or starting with corresponding hydrochlorides Ib under the same conditions but without additional amounts of acid (Scheme).

CI
$$R$$
 CH_3
 R
 R_1
 R_1
 R_1
 R_2
 R_1
 R_2
 R_2
 R_3
 R_4
 R_4
 R_4
 R_5
 R_7
 R_8
 R_8
 R_9
 R_9

The structure of the compounds synthesized was confirmed by ¹H-NMR spectroscopic method. The study of antimicrobial activity of the compounds **II** was carried out using the agar diffusion screening method known as "well method" against standard test-strains.

Results and discussion. The results of antimicrobial activity screening have shown that the most microbiologically active was less substituted 2,8-dimethyl-4-phenylaminoquinoline. This fact may be explained by higher water-solubility of this compound in comparison with 3-alkylsubstituted derivatives.

Conclusions. According to the SAR-analysis of the results obtained, further search for antimicrobial agents in the series of highly substituted 4-arylamino-3-alkyl-2-methylquinolines is unreasonable.