4-CHLORO-1-ETHYL-1*H*-2,1-BENZOTHIAZINE-3-CARBALDEHYDE 2,2-DIOXIDE IN SYNTHESIS OF 2-AMINO-4*H*-PYRANS

Kolodiazhna T. I., Shemchuk L. A. Scientific supervisor: assist. Lega D. A. National University of Pharmacy, Kharkiv, Ukraine legus.211288@gmail.com

Introduction. 2-Amino-4*H*-pyrans represent famous class of biologically active compounds. Our previous investigations have been dedicated to exploring 1-ethyl-1*H*-2,1-benzothiazin-4-(3*H*)-one 2,2-dioxide reactivity in the reaction with aldehydes and active methylene nitriles. In most cases this interaction resulted into condensed 2-amino-4*H*-pyrans. Formylation of the benzothiazine under the Vilsmeier–Haack reaction conditions gave 4-chloro-1-ethyl-1*H*-2,1-benzothiazine-3-carbaldehyde 2,2-dioxide. Application of the latter as aldehyde component in the abovementioned reaction might lead to 2-amino-4*H*-pyrans containing 1*H*-2,1-benzothiazine 2,2-dioxide core in the position 4.

Aim. To study the interaction of 4-chloro-1-ethyl-1H-2,1-benzothiazine-3-carbaldehyde 2,2-dioxide with malononitrile and carbonyl compounds aiming to synthesize 2-amino-4H-pyrans \Box -linked to 1H-2,1-benzothiazine 2,2-dioxide core.

Materials and methods. 4-Chloro-1-ethyl-1*H*-2,1-benzothiazine-3-carbaldehyde 2,2-dioxide, malononitrile and series of compounds containing CH₂CO moiety were used in the research as starting materials. While carrying out the research standard methods of organic synthesis were applied.

Results and discussion. It was found out that the three-component reaction (way 1) of 4-chloro-1-ethyl-1*H*-2,1-benzothiazine-3-carbaldehyde 2,2-dioxide 1 with malononitrile 2 and carbonyl compounds 3 in most cases yielded 2-amino-4*H*-pyran-3-carbonitriles 5. Unexpected outcome of the reaction occurred when 3-methyl-1*H*-pyrazol-5(4*H*)-one was utilized and compound 6 comprising novel condensed heterocyclic system of 7,10-dihydro-5*H*-benzo[*c*]pyrazolo[4',3':5,6]pyrano[2,3-*e*][1,2]thiazine 6,6-dioxide was isolated. It was also applied two-component format (way 2) towards 5 and 6 which turned out to be more convenient.

Conclusions. Series of 2-amino-4*H*-pyrans \Box -linked to 1*H*-2,1-benzothiazine 2,2-dioxide core was obtained. New product type of the reaction was isolated.

AMINOMETHYLQUINOLONES: A PROMISING CLASS OF NEW PSYCHOACTIVE SUBSTANCES

Kravchenko I. V.

Scientific supervisor: ass. prof. Podolsky I. M. National University of Pharmacy, Kharkiv, Ukraine medchem@nuph.edu.ua

Introduction. Our research focused on the class of new biologically active molecules – 3-aminomethylsubstituted 2-methylquinolin-4-ones. Initially, aminomethylquinolones were synthesized in National University of Pharmacy and considered as potential psychotropic agents because of their certain structural similarity with molecule of 5-hydroxytryptamine (5-HT).

Aim. Present study was undertaken to implement the *in vivo* profiling of psycho- and neurotropic properties of new 3-(N-R,R'-aminomethyl)-2-methyl-1H-quinolin-4-ones and reveal the possible «structure-activity relationships» (SAR) features for these derivatives.

Materials and methods. 3-(N-R,R'-Aminomethyl)-2-methyl-1H-quinolin-4-ones was synthesized from 2-methyl-1H-quinolin-4-one *via* aminomethylation and further interaction of the Mannich base obtained with the corresponding amines. N-Benzoylated derivatives were obtained by acylation of 2-methyl-3-(phenylaminomethyl)-1H-quinolin-4-one with benzoyl chloride or *o*-chlorobenzoyl chloride in the appropriate conditions. The identity of the compounds synthesized was confirmed by 1H-NMR spectroscopy.