УДК 54.057:542.951.1:547.831.9:615.28:616.441

КРИСТАЛЛИЧЕСКИЕ МОДИФИКАЦИИ ПАРА-МЕТОКСИАНИЛИДА 6-ГИДРОКСИ-4-ОКСО-2,4-ДИГИДРО-1*Н*-ПИРРОЛО[3,2,1-*ij*]ХИНОЛИН-5-КАРБОНОВОЙ КИСЛОТЫ – ГЕМИСОЛЬВАТ С ДИОКСАНОМ

И.В.Украинец, Н.Ю.Голик, В.В.Гриненко

Национальный фармацевтический университет 61002, г. Харьков, ул. Пушкинская, 53. E-mail: uiv@kharkov.ua

Ключевые слова: 4-гидрокси-2-оксо-1,2-дигидрохинолин-3-карбоксамиды; пирроло[3,2,1-ij]-хинолины; сольваты; рентгеноструктурный анализ; полиморфизм

С помощью рентгеноструктурного анализа однозначно доказано, что пара-метоксианилид 6-гидрокси-4-оксо-2,4-дигидро-1H-пирроло[3,2,1-ij]хинолин-5-карбоновой кислоты при кристаллизации из диоксана образует гемисольват, на основании чего сделан вывод о нецелесообразности использования этого растворителя в производстве указанной субстанции.

CRYSTAL MODIFICATIONS OF 6-HYDROXY-4-OXO-2,4-DIHYDRO-1H-PYRROLO[3,2,1-ij]QUINO-LINE-5-CARBOXYLIC ACID PARA-METHOXYANILIDE – HEMISOLVATE WITH DIOXANE I.V.Ukrainets, M.Yu.Golik, V.V.Grinenko

It has been definitively proven by X-ray diffraction analysis that para-methoxyanilide of 6-hydroxy-4-oxo-2,4-dihydro-1H-pyrrolo[3,2,1-ij]quinoline-5-carboxylic acid forms hemisolvate when crystallizing from dioxane, therefrom the conclusion has been made about inexpediency of using this solvent in manufacture of the given substance.

КРИСТАЛІЧНІ МОДИФІКАЦІЇ ПАРА-МЕТОКСІАНІЛІДУ 6-ГІДРОКСИ-4-ОКСО-2,4-ДИГІДРО-1Н-ПІРОЛО[3,2,1-іj]ХІНОЛІН-5-КАРБОНОВОЇ КИСЛОТИ – ГЕМІСОЛЬВАТ З ДІОКСАНОМ І.В.Українець, М.Ю.Голік, В.В.Гриненко

За допомогою рентгеноструктурного аналізу однозначно доведено, що пара-метоксіанілід 6-гідрокси-4-оксо-2,4-дигідро-1Н-піроло[3,2,1-іј]хінолін-5-карбонової кислоти при кристалізації з діоксану утворює гемісольват, на підставі чого зроблено висновок про недоцільність використання цього розчинника у виробництві зазначеної субстанції.

Кристаллизация является одной из наиболее важных и ответственных операций при промышленном производстве большинства лекарственных препаратов. Причин тому несколько. Во-первых, это, безусловно, самый распространенный и надежный способ обеспечения необходимой степени чистоты кристаллических соединений. Вовторых, кристаллизация даже при незначительных изменениях условий может существенно влиять на внутреннее кристаллическое строение вещества, приводя к образованию самых разнообразных его полиморфных модификаций или их смесей. Как следствие, физико-химические свойства субстанций могут резко и непредсказуемо меняться, а получаемые на их основе лекарственные препараты начинают проявлять различную, часто невоспроизводимую биологическую активность, биодоступность, стабильность и т.д. [1-6]. Именно поэтому в настоящее время многие лекарства получают нормативное утверждение только для определенной кристаллической формы исходного вещества, а ведущие фармацевтические компании очень внимательно и скрупулезно изучают полиморфизм производимых ими лекарственных субстанций и вспомогательных материалов, активно разрабатывая при этом новые автоматические и кристаллизационные методы для обнаружения их наиболее стабильных модификаций [1].

Руководствуясь этой информацией, в настоящем исследовании мы изучили возможность применения для очистки пара-метоксианилида 6гидрокси-4-оксо-2,4-дигидро-1*H*-пирроло[3,2,1-*ij*] хинолин-5-карбоновой кислоты (1), представляющего интерес в качестве нового перспективного диуретика [7], одного из распространенных и широко используемых растворителей – диоксана. При этом во внимание принималась как его достаточно высокая растворяющая способность, так и токсикологические характеристики. Следует отметить, что наличие остаточных количеств диоксана в лекарственных субстанциях хоть и регламентируется довольно строго [8], но не запрещено и даже не внесено в список растворите-

Таблица 1

Рис. 1. Строение молекул анилида **1** и сольватного диоксана с нумерацией атомов.

лей, использования которых при производстве лекарств следует избегать.

Проведенные нами эксперименты показали, что пара-метоксианилид 6-гидрокси-4-оксо-2,4дигидро-1*H*-пирроло[3,2,1-*ij*]хинолин-5-карбоновой кислоты действительно хорошо растворим в кипящем диоксане. При этом в отличие от ДМФА [9] сильно окрашенные растворы в присутствии активированного угля не образуются, а при остывании раствора формируются великолепные светло-желтые триклинные кристаллы, не вызывающие проблем при фильтровании. Однако предпринятое рентгеноструктурное исследование позволило однозначно определить, что подвергающееся очистке вещество образует с растворителем гемисольват формулы:

Молекула диоксана находится в частном положении в центре симметрии и имеет конформацию *кресло* (параметры складчатости [10]: S = 1.20, Θ = 0.0°, Ψ = 0.2°). Отклонения атомов кислорода от среднеквадратичной плоскости остальных атомов цикла составляют ± 0.66 Å (рис. 1, табл. 1 и 2).

Трициклический пирролохинолиновый фрагмент, атомы O(1), O(2) и карбамидная группа основного вещества лежат в одной плоскости с точностью 0.03 Å, что, по-видимому, обусловлено наличием двух сильных внутримолекулярных водородных связей O(2)-H(2O)...O(3) [H...O 1.51 Å, O-H...O 148°] и N(2)-H(2N)...O(1) [H...O 1.81 Å, N-H...O 149°]. Образование водородных связей приводит также к значительному удлинению связей O(1)-C(9) 1.249(1) Å и O(3)-C(12) 1.264(2) Å по

Длины связей (Å) в структуре сольвата анилида **1** с диоксаном

Связь	I, Å	Связь	I, Å
O(1S)-C(1S)	1.423(2)	O(1S)-C(2S)	1.424(2)
C(1S)-C(2S)#1	1.504(2)	C(2S)-C(1S)#1	1.504(2)
N(1)-C(9)	1.356(2)	N(1)-C(1)	1.374(2)
N(1)-C(10)	1.476(2)	N(2)-C(12)	1.337(2)
N(2)-C(13)	1.412(2)	O(1)-C(9)	1.249(1)
O(2)-C(7)	1.329(2)	O(3)-C(12)	1.264(2)
O(4)-C(16)	1.365(2)	O(4)-C(19)	1.427(2)
C(1)-C(6)	1.386(2)	C(1)-C(2)	1.386(2)
C(2)-C(3)	1.371(2)	C(2)-C(11)	1.519(2)
C(3)-C(4)	1.416(2)	C(4)-C(5)	1.366(2)
C(5)-C(6)	1.410(2)	C(6)-C(7)	1.432(2)
C(7)-C(8)	1.394(2)	C(8)-C(9)	1.464(2)
C(8)-C(12)	1.470(2)	C(10)-C(11)	1.550(2)
C(13)-C(14)	1.384(2)	C(13)-C(18)	1.399(2)
C(14)-C(15)	1.397(2)	C(15)-C(16)	1.383(2)
C(16)-C(17)	1.388(2)	C(17)-C(18)	1.378(2)

Таблица 2

Валентные углы (град.) в структуре сольвата анилида **1** с диоксаном

Валентный угол	ω, град.	Валентный угол	ω, град.
C(1S)-O(1S)-C(2S)	109.2(1)	O(1S)-C(1S)- C(2S)#1	109.9(1)
O(1S)-C(2S)- C(1S)#1	110.7(1)	C(9)-N(1)-C(1)	123.6(1)
C(9)-N(1)-C(10)	125.5(1)	C(1)-N(1)-C(10)	111.0(1)
C(12)-N(2)-C(13)	129.5(1)	C(16)-O(4)-C(19)	117.0(1)
N(1)-C(1)-C(6)	123.1(1)	N(1)-C(1)-C(2)	111.9(1)
C(6)-C(1)-C(2)	125.0(1)	C(3)-C(2)-C(1)	117.9(1)
C(3)-C(2)-C(11)	133.5(1)	C(1)-C(2)-C(11)	108.6(1)
C(2)-C(3)-C(4)	118.6(1)	C(5)-C(4)-C(3)	122.7(1)
C(4)-C(5)-C(6)	119.4(1)	C(1)-C(6)-C(5)	116.4(1)
C(1)-C(6)-C(7)	116.1(1)	C(5)-C(6)-C(7)	127.6(1)
O(2)-C(7)-C(8)	121.7(1)	O(2)-C(7)-C(6)	117.7(1)
C(8)-C(7)-C(6)	120.6(1)	C(7)-C(8)-C(9)	121.1(1)
C(7)-C(8)-C(12)	117.9(1)	C(9)-C(8)-C(12)	121.0(1)
O(1)-C(9)-N(1)	119.4(1)	O(1)-C(9)-C(8)	125.1(1)
N(1)-C(9)-C(8)	115.5(1)	N(1)-C(10)-C(11)	104.3(1)
C(2)-C(11)-C(10)	104.1(1)	O(3)-C(12)-N(2)	122.3(1)
O(3)-C(12)-C(8)	120.6(1)	N(2)-C(12)-C(8)	117.1(1)
C(14)-C(13)-C(18)	119.1(1)	C(14)-C(13)-N(2)	125.1(1)
C(18)-C(13)-N(2)	115.8(1)	C(13)-C(14)-C(15)	120.0(1)
C(16)-C(15)-C(14)	120.4(1)	O(4)-C(16)-C(15)	124.7(1)
O(4)-C(16)-C(17)	115.7(1)	C(15)-C(16)-C(17)	119.7(1)
C(18)-C(17)-C(16)	120.0(1)	C(17)-C(18)-C(13)	120.8(1)

Рис. 2. Упаковка молекул анилида 1 и сольватного диоксана в кристалле.

сравнению с их средним значением [11] 1.210 Å и укорочению связи O(2)-C(7) 1.329(2) Å (среднее значение 1.362 Å). Связь C(7)-C(8) удлинена до 1.394(2) Å (среднее значение 1.326 Å), что характерно для хинолоновых соединений.

Пара-метоксифенильный заместитель находится в ар-конформации относительно связи С(8)-С(12) и копланарен плоскости карбамидного фрагмента [торсионные углы C(13)-N(2)-C(12)-C(8) 180.0(1)°, C(12)-N(2)-C(13)-C(14) –3.7(2)°]. На взаимное расположение карбамидной группы и ароматического цикла влияют два противоположно направленных фактора: внутримолекулярная водородная связь С(14)-Н(14)...О(3) [Н...О 2.28 Å С-Н...О 121°], стабилизирующая копланарное расположение фрагментов, и отталкивание между атомами водорода H(18)...H(2N) 2.30 Å (сумма вандерваальсовых радиусов [12] 2.34 Å), способствующее развороту фрагментов друг относительно друга. Можно предположить, что копланарность карбамидной группы и ароматического цикла определяется более сильным влиянием водородной связи.

Метоксигруппа также практически копланарна плоскости ароматического цикла, несмотря на достаточно сильное отталкивание между атомами цикла и метильной группой [укороченные внутримолекулярные контакты H(15)...C(19) 2.50 Å (2.87 Å), H(15)...H(19b) 2.28 Å (2.34 Å), H(15)...H(19a) 2.29 Å (2.34 Å), H(19a)...C(15) 2.76 Å (2.87 Å) и H(19b)...C(15) 2.71 Å (2.87 Å)].

В кристалле молекулы пара-метоксианилида 6-гидрокси-4-оксо-2,4-дигидро-1*H*-пирроло [3,2,1-*ij*]хинолин-5-карбоновой кислоты (**1**) обра зуют слои, параллельные кристаллографической плоскости [0-1 1]. Молекулы соседних слоев расположены друг относительно друга по типу «голова к хвосту», а степень их перекрывания и расстояние между слоями (3.3 Å) позволяют предположить существование стэкинг-взаимодействия. Сольватные молекулы диоксана находятся между слоями (рис. 2).

В заключение следует отметить, что гемисольват пара-метоксианилида 6-гидрокси-4-оксо-2,4дигидро-1*H*-пирроло[3,2,1-*ij*]-хинолин-5-карбоновой кислоты с диоксаном не отличается высокой устойчивостью - медленное разложение наблюдается уже при комнатной температуре. По этой причине рентгеноструктурный анализ удалось провести только в условиях сильного охлаждения изучаемого кристалла жидким азотом. При нагреве этот процесс заметно ускоряется и, возможно, применение вакуум-сушильных установок позволит удалить сольватный диоксан из конечного продукта до нормативных [8] показателей. Тем не менее, по нашему мнению, данный растворитель использовать в промышленном производстве пара-метоксианилида 6-гидрокси-4-оксо-2,4дигидро-1*H*-пирроло[3,2,1-*ij*]-хинолин-5-карбоновой кислоты не следует, поскольку в большой массе препарата избавляться от него будет чрезвычайно сложно. Еще одним важным аргументом в пользу такого вывода послужила хорошо известная химикам чрезвычайно высокая склонность диоксана к образованию взрывоопасных пероксидов. Поэтому лучше по возможности заменить его более простым и безопасным в обращении растворителем.

Экспериментальная часть

Исходный пара-метоксианилид 6-гидрокси-4оксо-2,4-дигидро-1*H*-пирроло[3,2,1-*ij*]хинолин-5карбоновой кислоты (1) синтезирован по методике работы [13]. Его гемисольват с диоксаном получен при обычной перекристаллизации в нормальных условиях.

Рентгеноструктурное исследование. Кристаллы гемисольвата пара-метоксианилида 6-гидрокси-4-оксо-2,4-дигидро-1*H*-пирроло[3,2,1-*ij*]хинолин-5-карбоновой кислоты (1) с диоксаном триклинные (диоксан), при –173°С *a* = 8.6459(6), *b* = 8.7573(6), *c* = 11.8996(9) Å, α = 80.335(6)°, β = 85.950(6)°, γ = 77.157(6)°, *V* = 865.5(1) Å³, M_r = 380.39, *Z* = 2, пространственная группа Р, $d_{\text{выч}}$ = 1.460 г/см³, μ (МоК_{α}) = 0.105 мм⁻¹, F(000) = 400. Параметры элементарной ячейки и интенсивности 10038 отражений (5008 независимых, R_{int} = 0.033) измерены на дифрактометре Xcalibur-3 (МоК_{α}излучение, CCD-детектор, графитовый монохроматор, ω -сканирование, $2\theta_{\text{макс}} = 60^{\circ}$).

Структура расшифрована прямым методом по комплексу программ SHELXTL [14]. Положения атомов водорода выявлены из разностного синтеза электронной плотности и уточнены по модели «наездника» с $U_{_{H30}}$ = n $U_{_{3KB}}$ неводородного атома, связанного с данным водородным (n = 1.5 для метильной группы и n = 1.2 для остальных атомов водорода). Атомы водорода, участвующие в образовании водородных связей в структуре рацемата, уточнялись в изотропном приближении. Структура уточнена по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов до wR_2 = 0.073 по 4963 отражениям (R_1 = 0.040 по 2634 отражениям с $F > 4\sigma$ (F), S = 0.779). Полная кристаллографическая информация о структуре гемисольвата пара-метоксианилида 6-гидрокси-4-оксо-2,4-дигидро-1*H*пирроло[3,2,1-*ij*]хинолин-5-карбоновой кислоты (1) с диоксаном депонирована в Кембриджском банке структурных данных – депонент №ССDС 874629. Межатомные расстояния и валентные углы представлены в табл. 1 и 2 соответственно.

Выводы

1. Предпринята попытка использования диоксана для очистки субстанции пара-метоксианилида 6-гидрокси-4-оксо-2,4-дигидро-1*H*-пирроло [3,2,1-*ij*]хинолин-5-карбоновой кислоты.

2. Методом рентгеноструктурного анализа установлено, что в процессе кристаллизации растворитель образует с подвергающимся очистке веществом гемисольват, и поэтому его применение в производственном процессе признано нежелательным.

Литература

- 1. Бернштейн Дж. Полиморфизм молекулярных кристаллов. М.: Наука, 2007. 511 с.
- 2. Леонидов Н.Б., Шабатин В.П., Першин В.И. и др. // Рос. хим. журн. 1997. Т. XLI, №5. С. 37-40.
- 3. Bonfilio R., Pires S.A., Ferreira L.M. et al. // J. Pharm. Sci. 2012. Vol. 101, №2. P. 794-804.
- 4. Tothadi S., Bhogala B.R., Gorantla A.R. et al. // Chem. Asian J. 2012. Vol. 7, №2. P. 330-342.
- 5. Liu R.L., Yang Y.X., Chen D.Y. // Yao Xue Xue Bao. 2011. Vol. 46, №11. P. 1357-1360.
- 6. De Armas H.N., Peeters O.M., Van den Mooter G., Blaton N. // J. Pharm. Sci. 2007. Vol. 96, №5. P. 1114-1130.
- 7. Пат. 86883 (2009) Україна // Б.В. 2009. №10.
- 8. European Pharmacopoeia, 6th Ed. 2008. Vol. 1. P. 601-610.
- 9. Ukrainets I.V., Golik N.Yu., Shemchuk A.L., Kravchenko V.N. // Chem. Heterocycl. Comp. 2011. Vol. 47, Nº9. P. 1122-1127.
- 10. Zefirov N.S., Palyulin V.A., Dashevskaya E.E. // J. Phys. Org. Chem. 1990. Vol. 3, №3. P. 147-154.
- 11. Burgi H.-B., Dunitz J.D. Structure correlation. Weinheim: VCH, 1994. Vol. 2. P. 741-784.
- 12. Зефиров Ю.В. // Кристаллография. 1997. Т. 42, №5. С. 936-958.
- 13. Ukrainets I.V., Mospanova E.V., Bereznyakova N.L., Naboka O.I. // Chem. Heterocycl. Comp. 2007. Vol. 43, Nº12. P. 1532-1539.
- 14. Sheldrick G.M. // Acta Crystallogr., Sect. A. 2008. Vol. A64. P. 112-122.

Надійшла до редакції 13.04.2012 р.