SYNTHESIS AND BIOLOGICAL ACTIVITY OF 6-(1,3-BENZOXAZOL-2-YL)-5-METHYLTHIENO-[2,3-*d*]PYRIMIDINES

S. V. Vlasov,^{1,*} S. N. Kovalenko,¹ T. P. Osolodchenko,² E. B. Lenitskaya,¹ and V. P. Chernykh¹

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 52, No. 6, pp. 22-25, June, 2018.

Original article submitted August 25, 2014.

An approach to the synthesis of new 6-(1,3-benzoxazol-2-yl)-5-methylthieno[2,3-d]pyrimidin-4(3H)-ones and their 4-thioanalogs was developed. Some of the synthesized compounds exhibited antimicrobial activity against strains of *Bacillus subtilis* bacteria and *Candida albicans* fungi.

Keywords: thiophene, pyrimidine, benzoxazole, acetamides, sulfur.

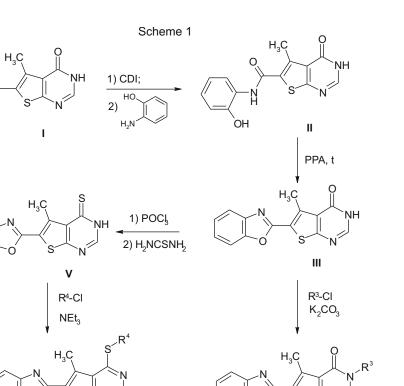
Approaches to the synthesis of biologically active thieno[2,3-d]pyrimidines with an azole substituent in the 6-position have recently been attracting increasing attention. Similar compounds were proposed as adenosine A2A receptor antagonists [1]. Related structures also turned out to be acetyl-CoA carboxylase inhibitors [2]. Studies of the antioxidant [3] and antiviral [4] properties of several 6-hetarylthieno[2,3-d]pyrimidines discovered similar compounds with antimicrobial activity [5-8]. Currently, two principal approaches to introducing a heterocycle in the 6-position of thieno[2,3-d]pyrimidines are known. The first uses 6-bromothieno[2,3-d]pyrimidines in reactions with boronic acids [1, 4] or organotin compounds [2]. The second involves modification of functional groups in the 6-position of the heterocyclic core [1, 3, 5-8]. In turn, benzoxazole derivatives possessed highly promising biological activity such as antimicrobial [9-16] and anti-inflammatory [17-19].

The present work continues our research on the use of 5-methyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine-6-carbo-xylic acid (I) to synthesis 6-heterylthieno[2,3-d]pyrimidines. Use of *o*-aminophenol in reactions with acid imidazolides is known to be an effective method for preparing benzoxazoles

* e-mail: sergiy.vlasov@gmail.com

[20-22] although it often requires additional dehydration after the acylation step.

The 6-(1,3-benzoxazol-2-yl)-5-methylthieno[2,3-*d*]pyrimidine-4(3*H*)-ones were built from *o*-aminophenol and acid I using 1,1'-carbonyldiimidazole (CDI) as a condensing reagent to produce *N*-(2-hydroxyphenyl)-5-methyl-4-oxo-3,4dihydrothieno[2,3-*d*]pyrimidine-6-carboxamide II, which was cyclized with heating in polyphosphoric acid (PPA) at 180°C for 3 h to give 6-(1,3-benzoxazol-2-yl)-5-methylthieno[2,3-*d*]pyrimidine-4(3*H*)-one (III) (Scheme 1).


TABLE 1. Yields and Melting Points of IV and VI

Compound	mp, °C	Yield, %	Molecular formula
IVa	239 - 241	83	$C_{21}H_{15}N_3O_2S$
IVb	238 - 240	77	$C_{22}H_{17}N_3O_2S$
IVc	> 300	79	$C_{22}H_{16}N_4O_3S$
IVd	> 300	67	$C_{22}H_{15}BrN_4O_3S$
IVe	> 300	78	$C_{24}H_{20}N_4O_3S\\$
IVf	> 300	71	$C_{23}H_{17}ClN_4O_3S$
IVg	298 - 300	82	$C_{24}H_{20}N_4O_5S\\$
VIa	271 - 273	74	$C_{22}H_{16}N_4O_2S_2 \\$
VIb	248 - 250	69	$C_{23}H_{18}N_4O_2S_2 \\$
VIc	253 - 255	73	$C_{25}H_{22}N_4O_2S_2\\$
VId	239 - 241	86	$C_{24}H_{20}N_4O_4S_2\\$

¹ National University of Pharmacy, 53 Pushkinskaya St., 61002 Kharkiv, Ukraine.

² I. I. Mechnikov Institute of Microbiology and Immunology, National Academy of Medical Sciences of Ukraine, 14-16 Pushkinskaya St., 61057 Kharkiv, Ukraine.

HÓ

S Vla-d

IVa-g

$$\begin{split} \mathbf{IV}: \ & \mathbf{R}^3 = \mathrm{Bn} \ (a), \ & \mathbf{R}^3 = 4 - \mathrm{CH}_3 - \mathrm{Bn} \ (b); \ & \mathbf{R}^3 = \mathrm{CH}_2 \mathrm{CONHPh} \ (c), \ & \mathbf{R}^3 = \mathrm{CH}_2 \mathrm{CONH} (4 - \mathrm{Br} - \mathrm{Ph}) \ (d), \ & \mathbf{R}^3 = \mathrm{CH}_2 \mathrm{CONH} (2, 4 - \mathrm{diCH}_3 - \mathrm{Ph}) \ (e), \\ & \mathbf{R}^3 = \mathrm{CH}_2 \mathrm{CONH} (2 - \mathrm{Cl} - 4 - \mathrm{CH}_3 - \mathrm{Ph}) \ (f), \ & \mathbf{R}^3 = \mathrm{CH}_2 \mathrm{CONH} (3, 5 - \mathrm{diOCH}_3 - \mathrm{Ph}) \ (g). \\ & \mathbf{VI}: \ & \mathbf{R}^3 = \mathrm{CH}_2 \mathrm{CONHPh} \ (a), \ & \mathbf{R}^3 = \mathrm{CH}_2 \mathrm{CONH} (4 - \mathrm{CH}_3 - \mathrm{Ph}) \ (b), \ & \mathbf{R}^3 = \mathrm{CH}_2 \mathrm{CONH} (4 - \mathrm{i} - \mathrm{Pr} - \mathrm{Ph}) \ (c), \ & \mathbf{R}^3 = \mathrm{CH}_2 \mathrm{CONH} (3, 5 - \mathrm{diOCH}_3 - \mathrm{Ph}) \ (b), \\ & \mathbf{VI}: \ & \mathbf{R}^3 = \mathrm{CH}_2 \mathrm{CONHPh} \ (a), \ & \mathbf{R}^3 = \mathrm{CH}_2 \mathrm{CONH} (4 - \mathrm{CH}_3 - \mathrm{Ph}) \ (b), \ & \mathbf{R}^3 = \mathrm{CH}_2 \mathrm{CONH} (4 - \mathrm{i} - \mathrm{Pr} - \mathrm{Ph}) \ (c), \ & \mathbf{R}^3 = \mathrm{CH}_2 \mathrm{CONH} (3, 5 - \mathrm{diOCH}_3 - \mathrm{Ph}) \ (d). \end{split}$$

TABLE 2. PMR Spectra of IV and VI, DMSO-d₆, δ , ppm

Compound	CH ₂ (s, 2H)	NH (br.s, 1H)	Thiophene CH ₃ (c, 3H)	Aliphatic protons	Aromatic protons 7.16 – 7.46 (m, 7H), 7.63 – 7.78 (m, 2H), 8.71 (s, 1H)			
IVa	5.15	-	2.92	-				
IVb	5.13	-	2.97	2.25 (c, 3H)	7.15 (d, 2H), 7.27 (d, 2H), 7.37 – 7.47 (m, 2H), 7.72 – 7.85 (m, 2H), 8.73 (s, 1H)			
IVc	4.86	10.48	2.97	-	7.06 (t, 2H), 7.25 – 7.47 (m, 4H), 7.58 (d, 2H), 7.71 – 7.83 (m, 2H), 8.51 (s, 1H)			
IVd	4.86	10.54	2.97	-	7.38 – 7.55 (m, 6H), 7.71 – 7.83 (m, 2H), 8.51 (s, 1H)			
IVe	4.87	9.73	2.98	2.18 (c, 3H), 2.21 (c, 3H)	6.89 – 7.04 (m, 2H), 7.24 (d, 1H), 7.35 – 7.47 (m, 2H), 7.72 – 7.82 (m, 2H), 8.51 (s, 1H)			
IVf	4.95	10.01	2.97	2.26 (c, 3H)	7.12 (d, 1H), 7.33 (d, 1H), 7.35 – 7.47 (m, 2H), 7.56 (d, 1H), 7.74 – 7.83 (m, 2H), 8.52 (s, 1H)			
IVg	4.84	10.44	2.97	3.65 (c, 6H)	6.23 (m, 1H), 6.82 (m, 2H), 7.36 – 7.48 (m, 2H), 7.75 – 7.85 (m, 2H), 8.51 (s, 1H)			
VIa	4.34	10.39	3.15	-	7.04 (t, 1H), 7.22 – 7.47 (m, 4H), 7.59 (d, 2H), 7.72 – 7.84 (m, 2H), 8.80 (s, 1H)			
VIb	4.35	10.30	3.20	2.23 (c, 3H)	7.10 (d, 2H), 7.40 – 7.53 (m, 4H), 7.78 – 7.89 (m, 2H), 8.85 (s, 1H)			
VIc	4.35	10.26	3.20	1.15 (d, 6H), 2.82 (m, 1H)	7.16 (d, 2H), 7.38 – 7.56 (m, 4H), 7.77 – 7.90 (m, 2H), 8.84 (s, 1H)			
VId	4.33	10.34	3.15	3.68 (c, 6H)	6.20 (m, 1H), 6.83 (m, 2H), 7.33 – 7.47 (m, 2H), 7.71 – 7.85 (m, 2H), 8.80 (s, 1H)			

Compound III was further modified via alkylation of the 3-N atom using DMF and K_2CO_3 to produce compounds IV (Tables 1 and 2). The regioselectivity of this reaction was evaluated from NOESY spectra of IVa and IVc, in which a distinct cross peak was observed for through-space coupling of alkyl methylene protons with the 2-H proton of the pyrimidine core.

Another modification pathway used an intermediate 4-chloro derivative to prepare 6-(1,3-benzoxazol-2-yl)-5-me-thylthieno[2,3-d]pyrimidine-4(3H)-thione (**V**) as reported earlier for similar structures [8]. Alkylation of the S atom of thione **V** produced a series of 4-S-alkyl derivatives (**VI**) (Tables 1 and 2).

Screening of **III-VI** for antimicrobial activity used an agar diffusion method (well diffusion method) [23 - 25].

The results found that the tested compounds were active mainly against *Bacillus subtilis* and *Candida albicans* (Table 3) and, in isolated instances, even more active than the reference drugs (metronidazole and synthomycin). The most active compound with respect to breadth and strength of antimicrobial activity was **IVg**.

TABLE 3. Screening Data for Antimicrobial Activity of III-VI by

 the Well Diffusion Method

	Average diameter (mm) of growth inhibition zone, number of test repetitions $n = 3^{\circ}$							
Com- pound	Staphylo- coccus aureus ATCC 25923	Esche- richia coli ATCC 25922	Proteus vulgaris ATCC 4636	Pseudo- monas aeruginos a ATCC 27853	Bañillus subtilis ATCC 6633	Candida albicans ATCC 653/885		
ш	14	14	-	13	16	19		
V	16	16	-	_	19	21		
IVa	_	_	14	17	14	20		
IVb	15	14	14	14	14	14		
IVc	16	18	15	17	21	14		
IVd	14	14	13	13	16	16		
IVe	14	_	-	-	16	15		
IVf	14	_	-	-	16	17		
IVg	20	16	15	16	19	20		
VIa	15	15	-	-	15	15		
VIb	14	15	-	-	15	13		
VIc	14	_	-	_	16	16		
VId	13	_	-	-	_	14		
Metr.**	14	14	-	_	16	14		
Synt.***	14	17	17	17	17	—		

* Averages of three tests are given; ** Metr. is metronidazole (DMSO solution, 30 μ g/mL); *** Synt. is synthomycin (H₂O solution, 30 μ g/mL).

Screening of **III**, **V**, and **VIa** for anti-inflammatory activity used a rat-paw carrageenan-induced edema model [26]. These tests showed that the compounds at the studied doses did not exhibit significant anti-inflammatory activity (Table 4). Administration of **III**, **V**, and **VIa** at doses of 1 and 50 mg/kg did not cause a statistically significant dose-dependent reduction of edema vs. the controls.

EXPERIMENTAL CHEMICAL PART

All solvents and reagents were obtained commercially. Melting points (°C) were measured using a Kofler apparatus. PMR spectra were recorded in DMSO-d₆ with TMS internal standard on a Varian Mercury instrument (200 MHz). ¹³C NMR and NOESY spectra were recorded in DMSO-d₆ with TMS internal standard on a Varian Gemini instrument (300 MHz). GC-MS analysis used a PE SCIEX API 150EX chromatograph with a mass-selective detector.

5-Methyl-4-oxo-3,4-dihydrothieno[2,3-*d*]pyrimidine-6-carboxylic acid (I) was prepared by the literature method [27].

6-(1,3-Benzoxazol-2-yl)-5-methylthieno[2,3-d]pyrimidine-4(3H)-one (III). A suspension of I (10 g, 0.048 mol) in anhydrous DMF (30 mL) was treated with CDI (8.4 g, 0.052 mol), heated until the reagents were fully dissolved and for another 15 - 20 thereafter. The resulting imidazolide was treated with o-aminophenol (5.2 g, 0.048 mol), heated at $120 - 130^{\circ}$ C for 3 - 4 h, cooled, and diluted with H₂O. The precipitate of II was filtered off. Compound II (10 g) was treated with PPA (35 mL), heated at 180°C until a homogeneous solution formed and for another 3 h thereafter, cooled, poured onto ice, and treated with conc. NaOH solution until slightly basic. The precipitate was filtered off and rinsed with copious amounts of H₂O to produce III, which did not require further purification. Yield 8.3 g (61.1%); $mp > 300^{\circ}C$; PMR spectrum (DMSO-d₆), δ , ppm: 2.96 (c, 3H, CH₃), 7.29 - 7.47 (m, 2H, Ar-H), 7.67 - 7.84 (m, 2H, Ar-H), 8.17 (s, 1H, CH), 12.57 (br.s, 1H, NH). ¹³C NMR spectrum (DMSO-d₆), δ, ppm: 15.78; 111.31; 120.11; 124.58; 125.65; 126.14; 139.63; 141.53; 148.33; 150.06; 158.61; 165.99. HPLC-MS, *m/z*: 283.3 (MH⁺). C₁₄H₉N₃O₂S.

General method for preparing 3-alkyl-6-(1,3-benzoxazol-2-yl)-5-methylthieno[2,3-d]pyrimidin-4(3H)-ones (IV). A suspension of III (0.15 g, 0.00052 mol) in DMF was treated with alkylating agent (0.00052 mol) and K_2CO_3 (0.075 g, 0.00052 mol), heated and stirred at 60°C for 5 – 8 h, cooled, and diluted with H₂O. The resulting precipitate was filtered off. Compounds IV were purified by refluxing in lower alcohols.

6-(1,3-Benzoxazol-2-yl)-5-methylthieno[2,3-d]pyrimidine-4(3*H***)-thione (V). Compound III (8 g, 0.028 mol) was treated with phosphoryl chloride (30 mL), stirred and refluxed until a homogeneous solution formed and for another 4 h thereafter, cooled, and poured onto ice. The resulting precipitate of the chloro-derivative was filtered off, dried at room**

Group	Dose, mg/kg —	Paw edema dynamics, mm							
		1 h	AIA, %	2 h	AIA, %	3 h	AIA, %	4 h	AIA, %
СР	-	11.4 ± 1.0	-	26.4 ± 2.1	_	36.6 ± 1.5	—	37.0 ± 3.1	_
Orthophen	8	10.2 ± 2.4	11	$11.2\pm1.6*$	58	17.4 ± 3.3*	53	22.4 ± 3.3*	40
III	1	10.2 ± 1.5	11	25.4 ± 2.8	4	33.4 ± 1.9	9	34.6 ± 2.0	7
	50	17.8 ± 3.7	-56	$33.6\pm1.5*$	-27	38.8 ± 2.2	6	35.4 ± 1.4	4
V	1	16.8 ± 2.9	-47	28.6 ± 3.4	-8	30.6 ± 2.5	16	31.4 ± 1.8	15
	50	17.2 ± 4.0	-51	28.4 ± 5.3	-8	35.6 ± 3.4	3	38.2 ± 2.0	-3
VIa	1	8.6 ± 1.3	25	25.0 ± 2.1	5	34.6 ± 2.2	6	35.0 ± 1.9	5
	50	14.4 ± 2.6	-26	27.2 ± 2.7	-3	35.0 ± 2.0	4	32.2 ± 1.4	13

TABLE 4. Screening Data for Anti-inflammatory Activity (AIA) of III, V, and VIa in the Carrageenan Edema Model in Rats (n = 5)

Difference statistically significant vs. CP (control pathology), p < 0.05; n is the number of animals in the group.

temperature, and used for subsequent reactions. The intermediate chloro-derivative (8 g, 0.026 mol) was treated with thiourea (2.5 g, 0.032 mol) and DMF (20 mL), stirred and refluxed for 2-3 h, cooled, and diluted with H₂O (20 – 30 mL). The resulting precipitate was filtered off. Crude product V was dissolved in a two-fold molar excess of aqueous base and heated for 10 - 15 min. The product precipitated after acidification to neutrality and was filtered off and rinsed on the filter with a large volume of H₂O. Yield 6.3 g (74.6%); mp > 300°C; PMR spectrum (DMSO-d₆), δ , ppm: 3.22 (c, 3H, CH₂), 7.31 – 7.48 (m, 2H, Ar-H), 7.70 – 7.85 (m, 2H, Ar-H), 8.22 (s, 1H, CH), 14.00 (br.s, 1H, NH). ¹³C NMR spectrum (DMSO-d₆), δ, ppm: 18.02; 111.34; 120.20; 120.66; 125.69; 126.34; 132.60; 140.72; 141.39; 146.48; 149.99; 158.42; 164.19; 180.19. HPLC-MS, m/z: 300.2 (MH^{+}) . $C_{14}H_{0}N_{3}OS_{2}$.

General method for preparing 4-alkylthio-6-(1,3benzoxazol-2-yl)-5-methylthieno[2,3-d]pyrimidines (VI). A suspension of V (0.15 g, 0.0005 mol) was treated with Et_3N (0.00055 mol) and alkylating reagent (0.0005 mol), heated at 120°C for 5 – 7 h, cooled, and diluted with H_2O . The precipitate was filtered off. The compounds were further purified in refluxing EtOH.

EXPERIMENTAL BIOLOGICAL PART

Antimicrobial activity of the tested compounds was assessed according to WHO recommendations [23 - 25]. Compounds were added as DMSO solutions (0.3 mL) at a concentration of 100 ig/mL with agar diffusion from wells.

Anti-inflammatory activity was studied in rats from the Central Research Laboratory of the National University of Pharmacy. Animals were kept according to current rules for instrumentation, equipment, and vivariums [28, 29]. Animals were handled according to the *European Convention for the Protection of Vertebrate Animals Used for Experimental and* *Other Scientific Purposes* [30]. The standard suite of Statistica 6.0 programs was used for the mathematical calculations [31].

REFERENCES

- E. Elzein, R. Kalla, J. Zablocki, et al., US Pat. Appl., 20070208040, Sept. 6, 2007; *Chem. Abstr.*, 147, 344106 (2007).
- G. C. Harriman, C. E. Masse, J. Harwood, et al., US Pat. Appl. 20130123231, May 16, 2013; *Chem. Abstr.*, **158**, 711376 (2013).
- Y. Kotaiah, N. Harikrishna, K. Nagaraju, and C. V. Rao, *Eur. J. Med. Chem.*, 58, 340 345 (2012).
- D. Classen-Houben, A. Wolkerstorfer, O. Szolar, et al., US Pat. Appl. 20130102601, Apr. 25, 2013; *Chem. Abstr.*, **158**, 620878 (2013).
- S. V. Vlasov, S. M. Kovalenko, and V. P. Chernikh, *Zh. Org. Farm. Khim.*, **11**(2), 41 46 (2013).
- S. V. Vlasov, O. V. Zaremba, S. M. Kovalenko, et al., *Zh. Org. Farm. Khim.*, 9(4), 24 30 (2011).
- S. V. Vlasov, S. M. Kovalenko, A. I. Fedosov, et al., *Zh. Org. Farm. Khim.*, 9(3), 51 55 (2011).
- S. V. Vlasov, S. M. Kovalenko, V. P. Chernykh, et al., J. Chem. Pharm. Res., 6(6), 22 – 27 (2014).
- L. P. Singh, V. Chawla, P. Chawla, et al., *PharmaChem*, 2(4), 206-212 (2010).
- Z. A. Kaplancikli, G. T. Ztouni, G. Revial, et al., *Arch. Pharm. Res.*, 27(11), 1081 – 1085 (2004).
- S. A. Hayta, M. Arisoy, O. T. Arpaci, et al., *Eur. J. Med. Chem.*, 43, 2568 – 2578 (2008).
- 12. T. Ertan, I. Yildiz, B. T. Gulbas, et al., *Eur. J. Med. Chem.*, 44, 501 510 (2009).
- O. Temiz-Arpaci, E. Aki-Sener, I. Yalcin, et al., Arch. Pharm., 335(6), 283 – 288 (2002).
- I. Y. Oren, B. T. Gulbas, O. T. Arpaci, et al., Asian J. Chem., 16(3-6), 1359-1366 (2004).
- 15. D. Seenaiah, P. R. Reddy, G. M. Reddy, et al., *Eur. J. Med. Chem.*, **77**, 1 7 (2014).
- M. Arisoy, O. Temiz-Arpaci, F. Kaynak-Onurdag, et al., Z. Naturforsch. C: J. Biosci., 68(11/12), 453 – 460 (2013).

- A. Srinivas, J. VidyaSagar, K. Swathi, et al., J. Chem. Pharm. Res., 2(2), 213 – 219 (2010).
- S. T. Patil and P. A. Bhatt, Int. J. Pharm. Res. Dev., 2(9), 165 – 170 (2010).
- A. Srinivas, J. Vidyasagar, and M. Sarangapani, *Int. J. Pharm. Sci.*, 2(1), 7 12 (2010).
- 20. J. A. Hunt, P. J. Sinclair, and R. F. Sweis, WO2008156718 Appl., Dec. 24, 2008; *Chem. Abstr.*, **150**, 77660 (2008).
- P. J. Smith and D. N. Ward, WO2011047390 Appl., Apr. 21, 2011; Chem. Abstr., 154, 459771 (2011).
- D. Nagarathnam, S. K. V. S. Vakkalanka, et al., WO2012170867 Appl., Dec. 13, 2012; *Chem. Abstr.*, 158, 77265 (2012).
- 23. *Bacteriological Control of Growth Media*, Information Letter of the Ukraine Ministry of Health, No. 05.4.1 / 1670, Kiev (2001).
- Yu. L. Volyans'kii, I. S. Gritsenko, V. P. Shirobokov, et al., Study of Specific Activity of Antimicrobial Drugs [in Ukrainian], Kiev (2004).
- 25. L. S. Nekrasova, V. M. Svita, T. G. Glushkevich, et al., *Determination of the Sensitivity of Microorganisms to Antibacterial Drugs* [in Ukrainian], Kiev (2007).

- O. V. Stefanova (ed.), *Preclinical Drug Trials* [in Ukrainian], Kiev (2001).
- 27. A. N. Grinev and N. V. Kaplina, *Chem. Heterocycl. Compd.*, **21**, 767 770 (1985).
- M. P. Zapadnyuk, V. I. Zapadnyuk, and E. A. Zakhariya, *Laboratory Animals. Use in Experiments* [in Russian], Vysshaya Shkola, Kiev (1983).
- Yu. M. Kozhem'yakin, O. S. Khromov, M. A. Filonenko, et al., Scientific-Practical Advice on Keeping Laboratory Animals and Working with Them [in Ukrainian], Avitsena, Kiev (2002).
- 30. Commission of the European Communities: Council Directive of 18 December 1986 on the Laws Regulating the Application of Principles of Good Laboratory Practice and the Verification of Their Applications for Tests on Chemical Substances (87 / 18 / EEC). The Rules Governing Medicinal Products in the European Community, Strasbourg (1991), pp. 145 – 146.
- O. Yu. Rebrova, Statistical Analysis of Medical Data. Use of the Applied Program Suite STATISTICA, MediaSfera, Moscow (2006).