ЭЛЕКТРОННЫЕ СПЕКТРЫ ПОГЛОЩЕНИЯ НЕПРЕДЕЛЬНЫХ КЕТОНОВ. ПРОИЗВОДНЫХ ДИБЕНЗОТИОФЕНА И КАРБАЗОЛА

С. Н. Коваленко, В. М. Никитченко, А. А. Карасев, В. Ф. Лаврушин

Спектральные характеристики дибензофурановых аналогов халкона описаны в работе [1]. Продолжая исследование природы электронных переходов в кросс-сопряженных системах, мы провели анализ электронных спектров поглощения (ЭСП) дибензотнофеновых и карбазольных аналогов халкона (табл. 1) общей формулы

rge X = S, NH, NCH₃; R = H, OCH₃, N(CH₃)₂; Cl, NO₂; n = 1, 2

В исследуемых гетероциклических аналогах халкона: кросс-сопряжение фрагментов А и Ц осуществляется: через карбонильную группу. Это приводит к тому, что фрагменты в этих системах: обнаруживают слабую связанность, которая, согласно данным работы: [2], пдолжна проявляться в преимущественной локализации электронных переходов на одном из фрагментов. Экспериментально слабая связь фрагментов подтверждается существованием в ЭСП двух типов полос, по-разному реагирующих на введение в бензольное ядро фрагмента Ц заместителя R различной электронной природы и на изменение электронодонорности гетероатома Х бифениленового цикла. Следует также отметить, что вся система электронных переходов молекулы может претерпеть небольшое смещение в область более низких энергий по сравнению:с переходами в несвязанных фрагментах. А и Ц вследствие взаимного возмущения близко расположенных энергетических состояний фрагментов А и Ц через карбонильную группу.

ментов А и Ц через карбонильную группу. В электронных спектрах поглощения сетероциклических таналогов халкона в области 240—400 нм наблюдаются тризчетыре интенсивные полосы поглощения. Спектры этих соединений имеют сложную природу и представляют собой суперпозицию сильно перекрывающихся полос кросс-сопряженных фрагментов, поэтому их обработка⁴ требует более объективных, чем графический, методов разделения сложных спектральных контуров на составляющие. Для этой цели мы использовали дифференцирование спектров с предварительным их сглаживанием [3]. Сглаживание проводили полиномом четвертой степени по семи точкам, дифференцирование — по варианту формулы Лагранжа для случая равных промежутков между измерениями по пяти точкам.

Как известно [4], анализ второи производнои спектров дает возможность более точно определить расположение составляющих, так как в этом случае их разрешение происходит при меньшем расстоянии между ними. В качестве примера на рис. 1 приведены электронные спектры соединений II и XIII. Видно, что минимумы второй производной более точно, чем максимумы недифференцированного спектра, указывают на расположение составляющих. Тем не менее для полос, расстояние между которыми немного меньше их полуширины, с помощью второй производной не удается надежно определить их положение [4]. В этом случае графическое разделение спектральных контуров основывалось на результатах дифференцирования, а также на данных по электронным спектрам фрагментов. Графическое разделение осуществлялось в предположении асимметрии составляющих [5].

Как показано в работах [6, 7], в спектрах гетероциклов с бифениленовой основой можно обнаружить ряд разрешенных переходов

Соединение*	R	λ. нм (ε·10 ³)	Графическое разделение	Отнесение полосы	
I	Н	315 (29,1) 275 (22,0)	335 (8,0) 317 (24,0) 299 (9,0) 274 (15,0)	$\begin{array}{c} \alpha_{A} + \alpha_{A}^{\bullet} \\ p_{\mu} \\ p_{A} \\ \beta_{A} \end{array}$	
11	OCH3	350 (30, 1) 275 (22,0)	351 (28,0) 328 (8,0) 298 (10,0) 274 (15,0)	$\begin{array}{c} {}^{P_{\mathbf{L}}}\\ {}^{p_{\mathbf{L}}}\\ {}^{\alpha_{\mathbf{A}}+\alpha_{\mathbf{A}}^{*}}\\ {}^{p_{\mathbf{A}}}\\ {}^{\beta_{\mathbf{A}}}\end{array}$	
111	N(CH ₃) ₂	403 (29,3) 317 (11,0) 294 (14,4) 270 (25,0)	403 (29,0) 370 (5,0) 323 (10,0) 298 (11,0) 275 (14,0)	$ \begin{array}{c} \rho_{\mu}\\ \alpha_{\mu}\\ \alpha_{A}+\alpha_{A}\\ \rho_{A}\\ \beta_{A} \end{array} $	
IV	Cl	317 (24,0) 274 (20,2)		_	
v	NO ₂	316 (27,2) 275 (21,5)		_	
VI**	Н	348 (51,6) 503 (20,0) 275 (25,0)	348 (51,6) 325 (6,0) 301 (12,0) 274 (18,8)	$ \begin{array}{c} {}^{\prime \rho}_{LL} \\ \alpha_{A} + \alpha_{A}^{\bullet} \\ {}^{\rho}_{A} \\ {}^{i}\beta_{A} \end{array}, $	
VII**	OCH3	369 (4 5,2) 302 (21,0) 275 (25,0)	369 (45,0) 324 (8,0) 303 (10,0) 275 (25,0)	$\begin{array}{c} & \rho_{II} \\ \alpha_{A} + \alpha_{A}^{*} \\ & \rho_{A} \\ & \beta_{A} \end{array}$	
VIII	Н	339 (18,0) 300 (31,1) 284 (31,8)	363 (5,0) 348 (13,0) 315 (23,2) 298 (11,0) 278 (17,0)	α _Α α _Α ρ _Ц ρ _Α β _Α	
IX	OCH3	352 (29,9) 333 (30,6) 282 (26,6)	364 (8,0) 354 (22,0) 322 (10,0) 299 (6,0) 280 (22,0)	$\begin{array}{c} \alpha_{A} \\ \rho_{II} \\ \alpha_{A}^{*} \\ \rho_{A} \\ \beta_{A} \end{array}$	
x	N(CH ₃)2	400 (37,1) 329 (14,4)	400 (36,0) 365 (8,0) 328 (10,0) 300 (8,0) 281 (15,0)	$ \begin{array}{c} \rho_{II}\\ \alpha_{A}+\alpha_{II}\\ \alpha_{A}^{\bullet}\\ \rho_{A}\\ \beta_{A}\\ \beta_{A} \end{array} $	
XI	CI	347 (17,5) 282 (23.0)	365 (5,0) 344 (12,0) 318 (24,0) 298 (14,0) 280 (22,0)	α _Α α _Α ρ _{ΙΙ} ρ _Α β _Α	

аблица 1 вектральные характеристики соединений I—XVII

Продолжение табл. 1

Соединение*	R	λ, нм (ε·10 ³)	I рафическое разделение	Отно сение пол осы
XII	NO ₂	286 (33,2)	366 (6,0) 345 (11,0) 317 (20,0) 298 (10,0) 284 (20,0)	α _Α α _Α ρ _Ц ρ _Α β _Α
XIII	н	355 (19,0) 285 (30,4)	370 (5,0) 351 (12,0) 312 (22,0) 300 (8,0) 285 (16,0)	$\begin{array}{c} \alpha_{A} \\ \alpha_{A} \\ \alpha_{A} \\ \rho_{II} \\ \rho_{A} \\ \beta_{A} \end{array}$
XIV	OCH3	354 (29,0) 336 (31,2) 285 (25,4) 303 (10,5)	370 (7,0) 354 (20,0) 325 (10,0) 303 (15,5) 285 (18,0)	$\begin{array}{c} \alpha_{A} \\ \rho_{II} \\ \alpha_{A} \\ \rho_{A} \\ \beta_{A} \end{array}$
XV	N(CH ₃) ₂	400 (30,0) 286 (28,4)	400 (30,0) 367 (7,0) 339 (8,0) 303 (7,0) 286 (20,0)	$ \begin{array}{c} \rho_{II} \\ \alpha_A + \alpha_{II} \\ \alpha_A \\ \rho_A \\ \beta_A \end{array} $
XVI	CI	322 (18,0) 293 (28,2) 278 (26,3)	368 (6,0) 350 (10,0) 313 (22,0) 302 (10,0) 285 (18,0)	$\alpha_{A} \\ \alpha_{A} \\ \rho_{II} \\ \rho_{A} \\ \beta_{A} $
XVII	NO ₂	284 (31,6)	371 (4,0) 350 (8,0) 315 (21,0) 299 (10,0) 285 (22,0)	$\alpha_{A}^{\alpha} \alpha_{A}^{\alpha} \rho_{II}^{\rho} \rho_{A}^{\rho} \beta_{A}^{\rho}$

• Для соединений [--VII X=S; для VIII--XII X=NH; для XIII--XVII X=NCH3; **n=2.

(а, α^* , p, β , β' , β^* , γ , δ), которые в силу слабой связанности фрагментов А и Ц должны наблюдаться и в спектрах гетероциклических аналогов халкона. При этом они накладываются на p- и α -переходы фрагмента Ц [8] и взаимодействуют с ними. В термина́х этой классификации мы и проводили отнесение графически выделенных полос (табл. 1).

Сложный характер электронных спектров изучаемых соединений, согласно данным рис. 1 и табл. 1, обусловлен в первую очередь несколькими интенсивными полосами, за которые ответственен фрагмент A (в основном p_A , β_A). Как и следовало ожидать, при введении донорных заместителей в бензольное кольцо фрагмента Ц эти полосы почти не изменяли своего положения, а спектральные изменения вызывались перемещением электронных переходов фрагмента Ц (в основном $p_{\rm L}$) в область более низких энергий, тогда как акцепторные заместители почти не влияли на положение этих переходов. Увеличение донорности гетероатома бифениленового ядра приводит к батохромному смещению большей части переходов фрагмента A (см. табл. 1). Особенно чувствительны к таким изменениям свойства гетероатома α_A - и β_A -полосы. Батохромный сдвиг при переходе от соединения I к соединению XIII α_A -полосы составляет 2800 см⁻¹, β_A -полосы — 1400 см⁻¹. О величине смещения α_A^* - и p_A -полос из-за значительного их перекрывания более интенсивными β_A - и p_{II} -переходами на основании экспериментальных данных трудно делать какие-либо выводы.

Природа экспериментально наблюдаемых и графически выделенных полос обсуждалась на основе расчетных данных, полученных по программе, реализующей полуэмпирический вариант ППП метода МО [9]. Расчет выполняли с учетом 49 однократно возбужденных конфигураций. Значение потенциала ионизации I и сродства к электрону А

Рис. 1. Графический анализ ЭПС соединений II (а) и XIII (б). $a: 1 - p_{II}; 2 - \alpha_A + \alpha_A^*; 3 - p_A; 4 - \beta_A; 6: 1 - \alpha_A; 2 - \alpha_A^*; 3 - p_{II}; 4 - p_A; 5 - \beta_A$. Отнесение полос приведено в табл. 1.

взяты из работы [10]. Величины двухцентровых интегралов межэлектронного отталкивания оценивали по Матага — Нишимото. В качестве геометрических моделей принимались плоские *транс*-конформеры с *S-цис*-расположением карбонильных групп и двойных связей.

Электронные переходы охарактеризованы нами переносом заряда между фрагментами молекул, о величине и направлении которого судили по результатам сопоставления алгебраических сумм $\Delta P_{\mu\mu}$ на атомах соответствующих фрагментов и степени локализации электронных переходов на фрагментах (табл. 2).

Квантовохимические расчеты достаточно хорошо отражают обнаруживаемые в эксперименте закономерности, хотя и завышают энергию переходов и разность энергии α_A - и α_A^* -переходов. Как и в эксперименте, в расчете обнаруживается система электронных переходов, локализованных на фрагменте А. Для соединения I — это S_0 — $S_1(\alpha_A)$, S_0 — $S_4(\alpha_A^*)$, S_0 — $S_5(p_A)$, S_0 — $S_6(\beta_A)$, локализованные на фрагменте А соответственно на 96,4; 53,6; 93,9; 91,4 %. Аналогично для соединения XIII наблюдаются переходы S_0 — $S_1(\alpha_A)$, S_0 — $S_3(\alpha_A^*)$, S_0 — $S_5(p_A)$ и S_0 — $S_6(\beta_A)$, локализованные на фрагменте А соответственно на 98,1; 29,9; 92,4 и 83,2 %. Эти переходы, за исключением p_A -перехода, претерпевают батохромное смещение при увеличении электронодонорности гетероатома (рис. 2, a). Замена атома серы (соединение I) на N-метиламиногруппу (соединение XIII) сопровождается смещением α_A -, α_A^* -, β^A -переходов в область более низких энергий на 1300, 370 и 960 см⁻¹ соответственно, а p_A -переход претерпевает гипсохромный сдвиг на 230 см⁻¹. При этом их последовательность не изменяется, а расстояние между α_A - и α_A^* -переходами увеличивается.

Предположение о том, что р_ц-переход фрагмента Ц должен мало изменять свою энергию при замене дибензотиофенового фрагмента на

Соединение	Переход <i>S</i> 0— <i>S</i> к	Фрагмент							
		a	D	E	F	Тип перехода	λ, нм	f	φ ₀ , Β
			<i>L</i> . % (Δ <i>P</i> _{μμ})			-			
I	0—1	1,5 (+3)	2,1 (+20)	6,2(+96)	90,2 (119)	A (α_A); $F \rightarrow E + D$	300,4	0,16	50
	0—2	17,3 (—79)	19,0 (+62)	14,0 (+269)	49,6 (—252)	O (p_{U}); $C+F\rightarrow E+D$	285,6	0,95	252
	0—3	83,8 (83)	11 ,6 (+58)	2,7 (+33)	1,9 (—8)	$C(\alpha_{II}); C \rightarrow E + D$	270,0	0,01	311
	04	23,7 (84)	22,7 (+46)	16,0 (+168)	37,6 (-130)	$O(a_A^*); C+F\rightarrow E+D$	269,6	0,30	588
	0—5	2,4(+15)	3,7 (+47)	7,2(+121)	86,7 (—183)	A $(p_A); F \rightarrow E + D$. 264,9	0,06	324
	0—6	2,9 (+24)	5,7(+40)	3,4 (+87)	88,0 (—151)	A $(\beta_A); F \rightarrow E + D$	246,7	0,34	86
XIII	0—1	0,7 (+5)	1,2(+12)	4,3(+52)	93,8 (—69)	A (α_A); $F \rightarrow E + D$	312,8	0,12	45
	0—2	6,0(+30)	10,0(+100)	14,1 (+256)	69,9 (—386)	$O(\alpha^*_A); F \rightarrow E + D$	310,0	0,86	77
	0—3	34,8 (185)	34,3 (—6)	15,0 (+170)	14,9(+21)	$O(p_{\underline{i}\underline{i}}); C \rightarrow E$	272,3	0,63	85
	0—4	87,3 (—90)	9,9(+61)	2,1(+26)	0,7 (+3)	C (α_{II}); $C \rightarrow E + D$	272,3	0,02	65
	05	2,8 (+48)	4,8 (+87)	6,0 (+87)	86,4 (222)	A $(\rho_A); F \rightarrow E + D$	262,8	0,07	70
	06	6,1 (+38)	10,7 (+107)	5,1(+201)	78,1 (346)	A (β_A); $F \rightarrow E + D$	252,7	0,04	7

Таблица 2 Локализация электронных переходов L и перенос заряда $\Delta P_{\mu\mu}$ при переходах S₀-S_к соединений I и XIII

карбазольный или N-метилкарбазольный не подтверждается расчетом. Причниу этого мы видим в близком расположении электронных состояний изолированных фрагментов A и Ц относительно друг друга. Не исключена также возможность случайного вырождения этих состояний. Когда же фрагменты A и Ц объединяются в единую молекулу, происходит взаимодействие вырожденных или почти вырожденных состояний, что приводит к образованию двух «новых» состояний, отличающихся по энергии на величину энергии взаимодействия исходных состояний. Так, в расчетных спектрах 2-ацетилдибензотиофена и коричного альдегида переходы α_A^* и p_{Π} почти совпадают по энергии,

Рис. 2. Корреляционные диаграммы теоретических спектров соединений I—III, VIII, XIII.

тогда как при расчете спектра соединения I (табл. 2) разница в энергии этих переходов составляет 2100 см-1. К сожалению, такое расщепление переходов практически невозможно обнаружить в эксперименчальном спектре с сильно перекрывающимися полосами. Однако для соединения XIII энергия расщепления этих переходов составляет уже величину 4700 см-1. В этом случае в экспериментальном спектре раздвижение соответствующих полос прослеживается четко. Так, в спектре поглощения соединения XIII (см. рис. 1, б) действительно обнаруживается длинноволновая полоса средней интенсивности (Амакс = = 357 нм, ε=1700), коэффициент экстинкции которой трудно объяснить только за счет малоинтенсивных полос (α и α*) фрагмента А. По всей видимости, взаимодействие вырожденных или почти вырожденных состояний сопровождается и перераспределением интенсивности электронных переходов. Расчетный спектр соединения XIII подтверждает это предположение (см. табл. 2). Если в несвязанном фрагменте А (2-ацетилдибензотиофен) α_A^* -переход имеет силу осциллятора f=0,20, а для перехода p_{\downarrow} фрагмента Ц (коричный альдегид) f=0,98; то для соединения I α_{Λ}^* -переход имеет f=0,31, а p_{11} -переход — f=0,95; для соединения XIII эти величины соответственно равны 0,63 и 0,86. Эти факты указывают на то, что при объединении фрагментов А и Ц происходит существенное взаимодействие α_A^* -состояний фрагмента A с p_{μ} -состоянием фрагмента Ц, тогда как другие состояния остаются почти невозмущенными. Причем это взаимодействие возрастает при переходе от соединения I к соединению VII и соединению XIII. Энергия ац-перехода существенно не изменяется. Числа локализации для а_А* и р_и возбужденных состояний указывают на общемолекулярную

природу возбуждения, так как волновые функции вырожденных или почти вырожденных состояний фрагментов А и Ц после взаимодействия смешиваются и результирующая волновая функция будет представлять собой линейную комбинацию волновых функций этих состояний. Поэтому указать, на каком фрагменте происходит возбуждение, не представляется возможным. Так, для соединений I и XIII p_{μ} и a_A^* -переходы ($S_0 - S_2$, $S_0 - S_4$ и $S_0 - S_2$, $S_0 - S_3$ соответственно) имеют следующие числа локализации на фрагменте А или Ц: для a_A^* -перехода $L_A = 53,6\%$ (соединение I); $L_A = 29,9\%$ (соединение XIII); для $p_{\rm II}$ -перехода $L_{\rm III} = 50,4$ % (соединение 1), $L_{\rm III} = 30,1$ % (соединение XIII).

При введении донорных заместителей в бензольное кольцо фрагмента Ц расчет предсказывает батохромное смещение р_ц-перехода, что согласуется с экспериментом. При этом $p_{\rm II}$ -переход удаляется из области поглощения фрагмента А, тем самым уменьшается возможность взаимного возмущения электронных состояний фрагментов. Числа локализации на фрагменте Ц для этого перехода в соединениях III, X, XV соответственно равны 92,7; 87,9; 85,6 %. а_П-Переход также претерпевает батохромный сдвиг (рис. 2, б).

К аналогичной картине приводит и удлинение цепи сопряжения фрагмента Ц, поскольку оно сказывается лишь на энергии $p_{\rm L}$ - и $\alpha_{\rm L}$ -состояний. Так, для соединения VI первый переход $p_{\rm II}$ локализован на 85,7 % на фенилпентадиенальном фрагменте и на 1700 см-1 расположен батохромнее ал-перехода, имеющего самую низкую энергию из всех переходов фрагмента А.

В расчетных спектрах диметиламинопроизводных (соединения III, X, XV) в области 250 нм можно заметить по два перехода (So-So, S₀—S₇), которые не обнаруживались в расчетных спектрах других соединений. Анализ чисел локализации показал, что эти переходы также имеют общемолекулярную природу. Однако мы отличаем их от общемолекулярных состояний, возникающих в результате случайного вырождения электронных состояний фрагментов А и Ц, и относим их к внутримолекулярным состояниям переноса заряда с фрагмента Ц на фрагмент А. Для соединения III перенос заряда составляет 0,61 ($S_0 - S_6$) и 0,87 е ($S_0 - S_7$), для соединения XV — 0,49 и 0,93 е соответственно.

- 3. Коробков М. Е. Обработка спектров дифференцированием с использованием ЭЦВМ // Журн. прикл. спектроскопии.— 1979.—30, № 4.— С. 694—698. 4. Гуляев Б. А., Литвин Ф. Ф., Веденесв Б. Л. Разложение сложных спектральных кри-
- вых биологических объектов на компоненты с использованием производной спектро-
- вых биологических объектов на компоненты с использованием производной спектроскопии // Научн. докл. высш. шк. Биологические науки.— 1971.—№ 4.— С. 49—57.
 5. Siano D. P., Meller D. E. Band shapes of electronic spectra of complex molecules // J. Chem. Phys.— 1969.—51, N 5.— P. 1856—1861.
 6. Momicchioly F., Rastrelli A. Theoretical studies on the ultraviolet spectra of five-member heterocycles π-Systems isoelectronic with condensed aromatic hydrocarbons // J. Chem. Soc. B.— 1970.— N 7.— P. 1353—1358.
 7. Tanaka M. Electronic states of fluorene, carbasole and dibenzofurane // Bull. Chem. Soc. Japan.— 1976.—49, N 12.— P. 3382—3388.
 8. Интерпретация электронных спектров винилогов бензофенона / А. А. Сухоруков, О. В. Лаврушина, В. Х. Гриф и др. // Журн. общей химии.— 1978.—48, № 2.— С. 377—385.
 9. Методы расчета электронной структуры и слектров молекия /Ю. А. Компаки.

- Методы расчета электронной структуры и спектров молекул / Ю. А. Кругляк, Г. Г. Дядюша, В. А. Куприевич и др.— Киев: Наук. думка, 1969.— 307 с.
 Billingsley F. P., Bloor J. E. Theoretical studies on the electronic spectra of substitu-ted aromatic molecules // Theoretical Chim. Acta.— 1968.—11, N 1.— P. 325—343.

Харьков. ун-т

Поступила 10.01.85