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Abstract: Neuroinflammation is an integral part of epilepsy pathogenesis and other convulsive condi-
tions, and non-steroidal anti-inflammatory drugs (NSAIDs) present a potent tool for the contemporary
search and design of novel anticonvulsants. In the present paper, evaluation of the anticonvulsant
activity of the potential NSAID dual COX-2/5-LOX inhibitor darbufelone methanesulfonate using
an scPTZ model in mice in dose 100 mg/kg is reported. Darbufelone possesses anticonvulsant
properties in the scPTZ model and presents interest for in-depth studies as a possible anticonvulsant
multi-target agent with anti-inflammatory activity. The series of 4-thiazolidinone derivatives have
been synthesized following the analogue-based drug design and hybrid-pharmacophore approach
using a darbufelone matrix. The synthesized derivatives showed a significant protection level for
animals in the scPTZ model and are promising compounds for the design of potential anticonvulsants
with satisfactory drug-like parameters.

Keywords: 4-thiazolidinones; darbufelone; dual COX-2/5-LOX inhibitor; pentylenetetrazole seizure;
anticonvulsant activity

1. Introduction

More than 70 million people suffer from epilepsy and seizure conditions, constitut-
ing nearly 1% of the global population [1]. The available schemes and protocols for the
treatment of such pathologies are very often imperfect, therefore the research and de-
velopment of innovative anticonvulsants are unmet and actual problems for medicinal
chemists [2–5]. Recently, considerable attention in search of possible targets for the correc-
tion of epilepsy and related conditions has been focused on the neuroinflammation process
which occurs due to many reasons, such as neuroinfection, strokes, and head injuries,
and can initiate an inflammatory cascade in the central nervous system [6,7]. Neuroinflam-
mation is a predictor of increased convulsive readiness [8] and key trigger for epilepsy
pathogenic mechanisms such as the activation of microglia and microglial inflammatory
mediators [9], the expression of circulating immune cells [10], cytokine and chemokine
upregulation [11], free radical formation [12], and cyclooxygenases-1 and 2 (COX-1/2)
upregulation, etc. [13,14]. Therefore, potential NSAIDs with different mechanisms of action
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represent a powerful tool for modern anticonvulsant design [15,16]. A number of approved
NSAIDs from many chemical chemotypes were evaluated in various screening convulsive
models and were found to be effective, as well as prospects for subsequent experiments
(Figure 1) [17–22].
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Figure 1. Anticonvulsant properties of marketed NSAIDs.

Both primary enzymes COX-1 and COX-2, which catalyze the synthesis of inflam-
matory prostanoids and are main targets for NSAIDs, have been reported as potential
neurotherapeutic targets for epilepsy correction and management [14,16,23].

In the aforementioned context, the darbufelone–NSAID, a dual inhibitor targeting
COX-2 and 5-lipoxygenase (5-LOX), presents interest for study as a possible potential
anticonvulsant. Darbufelone belongs to 4-thiazolidinone derivatives, and among this
class of heterocycles, the thiazole-4-thiazolidinone hybrid molecules are known as an
important source of drug-like molecules with various kinds of biological activities as well
as polypharmacological agents [24–29]. The thiazole-4-thiazolidinone-bearing hybrids with
promising anticonvulsant properties were identified and reported [26,30]. Among them the
hit-compound Les-6222 (Figure 2) was found to be the most active in maximal electroshock
seizures (MES) and pentylenetetrazole (PTZ) tests, and at doses of 50–150 mg/kg possessed
equal activity compared to sodium valproate and carbamazepine.

Taking into account all the above reasons, herein we present a study of the anticonvul-
sant properties of darbufelon in a subcutaneous pentylenetetrazole (scPTZ) seizure model.
Additionally, as a logical continuation, the other main goal of the current work was the
synthesis of some darbufelon analogues and hybrids with thiazole moieties (Figure 2) and
the evaluation of their anticonvulsant activity in scPTZ tests.
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Figure 2. Background and design for the current work.

2. Materials and Methods
2.1. General Information

All materials were purchased from commercial sources and used without purification.
Melting points were measured in open capillary tubes and are uncorrected. The elemental
analyses (C, H, N) were performed using the Perkin–Elmer 2400 CHN analyzer (Perkin–
Elmer, Norwalk, CT, USA) and were within 0.4% of the theoretical values. The 1H and
13C NMR spectra were recorded on a Bruker AVANCE-400 spectrometer (Bruker, Bremen,
Germany). All spectra were recorded at room temperature, except where indicated other-
wise, and were referenced internally to solvent reference frequencies. Chemical shifts (δ)
are quoted in ppm, and coupling constants (J) are reported in Hz. LC–MS spectra were ob-
tained on a Finnigan MAT INCOS-50 (Thermo Finnigan LLC, San Jose, CA, USA). Solvents
and reagents that are commercially available were used without further purification.

The procedure used for the synthesis of compound 1b was described in [31]; for com-
pounds 3a,b, in [32]. The derivatives Les-6290, Les-6291, Les-6296 have been obtained from
3a,b and 2-aminothiazol-4(5H)-one (4) accordingly to the protocol described in [33].

2.2. Synthesis and Characterization of Compounds
2.2.1. Synthesis of (thiazol-2-ylamino/5-acetyl-4-methyl-thiazol-2-ylamino)-acetyl
chlorides (2a,b)

A solution of chloroacetyl chloride (3 mmol) in 5 mL of dioxane was added to an
appropriate mixture of 2-aminothiazole (1a) or 2-amino-4-methyl-5-acetylthiazole (1b)
(3 mmol) and triethylamine (3 mmol) in 5 mLof dioxane and was later heated to 70–80 ◦C
for 30 min, cooled, and poured into water (50 mL). The obtained powder was filtered off,
washed with water, and recrystallized from ethanol.

2.2.2. Characterization of Compounds Les-6296, Les-6290, Les-6291

Les-6296: 5-(3,5-Di-tert-butyl-4-hydroxybenzylidene)-2-(thiazol-2-ylimino)-thiazolidin-4-one.
Yield 72%, yellow-brown powder, m.p. 170–172 ◦C; 1H NMR (400 MHz, DMSO-d6):
δ 1.39, 1.41 (2*s, 18H, t-Bu), 7.38 (m, 1H, thiazol.), 7.45 (s, 1H, =CH), 7.60 (m, 1H, thiazol.),
7.64 (m, 2H, arom.), 8.00 (s, 1H, OH), 9.80, 12.21, 12.51 (3*s, 1H, NH); 13C NMR (100 MHz,
DMSO-d6): 30.3, 34.8, 117.6, 125.1, 127.3, 128.7, 133.7, 140.3, 144.6, 148.0, 162.7, 168.6, 192.4.
Anal. Calcd for C21H25N3O2S2: C, 60.69; H, 6.06; N, 10.11. Found: C, 60.60; H, 6.00; N,
10.19. ESI-MS m/z 416 (M+H)+.
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Les-6290: 2-(5-Acetyl-4-methylthiazol-2-ylimino)-5-(3,5-di-tert-butyl-4-hydroxybenzylidene)-
thiazolidin-4-one. Yield 80%, yellow-brown powder, m.p. 158–160 ◦C; 1H NMR (400 MHz,
DMSO-d6): δ 1.26 (s, 3H, CH3), 1.39 (s, 18H, t-Bu), 1.51 (s, 3H, CH3), 7.38, 7.45 (2*s, 1H,
=CH), 7.66 (s, 2H, arom.), 7.99 (s, 1H, OH), 9.80 (s, 1H, NH); 13C NMR (100 MHz, DMSO-d6):
19.0, 35.0, 35.2, 39.6, 114.9, 123.5, 130.5, 132.0, 133.4, 143.8, 153.5, 165.1, 168.7, 174.5, 197.2.
Anal. Calcd for C24H29N3O3S2: C, 61.12; H, 6.20; N, 8.91. Found: C, 61.20; H, 6.30; N, 8.82.
ESI-MS m/z 472 (M+H)+.
Les-6291: 2-Amino-5-(4-nitrobenzylidene)-thiazol-4-one. Yield 80%, yellow powder, m.p. > 240 ◦C;
1H NMR (400 MHz, DMSO-d6): δ 7.68 (s, 1H, =CH), 7.81 (d, 2H, J = 8.5 Hz, arom.), 8.32
(d, 2H, J = 8.5 Hz, arom.), 9.34, 9.62 (2*s, 2H, NH2); 13C NMR (100 MHz, DMSO-d6): 129.4,
131.6, 135.4, 139.0, 145.8, 152.1, 180.3, 185.0. Anal. Calcd for C10H7N3O3S: C, 48.00; H, 3.22;
N, 16.70. Found: C, 48.07; H, 3.32; N, 16.80. ESI-MS m/z 250 (M+H)+.

2.3. Pharmacology Assay
2.3.1. Animals

The experiments were conducted on random-bred male albino mice weighing 18–22 g
purchased from the Animal House of the Central Research Laboratory of the Educational
and Scientific Institute of Applied Pharmacy of the National University of Pharmacy,
Kharkiv, Ukraine. The animals were housed in groups of 10 in standard plastic cages,
at room temperature of 20 ± 2 ◦C, exposed to a 12:12 h light/dark cycle, with ad libitum
standard laboratory food and water. All experiments were performed between 9 a.m. and
3 p.m. The tested groups consisting of 6–7 mice were chosen by means of a randomized
schedule. All procedures performed in studies involving animals were in accordance with
the ethical standards of the institution or practice at which the studies were conducted,
and were approved by the Local Ethical Committee in National University of Pharmacy,
Kharkiv, Ukraine (Approval No: 3/2019).

2.3.2. Subcutaneous Pentylenetetrazole Model (scPTZ)

The scPTZ-induced seizures were performed by subcutaneous injection of PTZ
(90 mg/kg). Animals were placed into the separate transparent plastic cylindrical con-
tainers and continuously monitored for 60 min. Sodium valproate (Depakine, Sanofi-
Aventis, France) at a dose of 300 mg/kg [34] in the form of a syrup for oral adminis-
tration, and phenytoin (Diphenin, Kyiv Vitamin Plant, Kyiv City, Ukraine) at a dose of
40 mg/kg [35] were used as reference drugs. Celecoxib (Celebrex, Pfizer, New York City,
NY, USA)—selective COX-2 inhibitor with early described anticonvulsant properties [36]
was used at a dose of 4 mg/kg for comparison. Darbufelone methanesulfonate and com-
pounds Les-6290, Les-6291, and Les-6296 were administered once intragastrically (i.g.)
in the form of an aqueous suspension stabilized with Tween-80 at a dose of 100 mg/kg
30 min before seizure induction [34]. The dose of test compounds at 100 mg/kg was
selected for this screening study based on previous studies of a number of 4-thiazolidinone
derivatives, in which the compounds showed a pronounced anticonvulsant effect [26,30].
The Les-6296 was further tested at a dose of 75 mg/kg (i.g.), which is equivalent to a dose
of 100 mg/kg of darbufelone methanesulfonate. The Les-6291 was also administered i.g.
at a dose of 53 mg/kg, which corresponds to a 40 mg/kg dose of phenytoin. The effec-
tiveness of all substances were evaluated by the following indicators: latency period of
first convulsions (latency), the number of clonic–tonic seizures in 1 mouse, percentage of
animals in the group separately with clonic and tonic convulsions, severity of seizure—in
points (1 point—single tremors; 2 points—“manege” running or “kangaroo” position;
3 points—clonic convulsions without lateral position; 4 points—clonic–tonic convulsions
with lateral position; 5 points—tonic extension; 6 points—tonic extension, which led to the
death of the animal), duration of convulsive period (period of seizures), life expectancy of
animals to death (time to death), and lethality. If seizures were not observed for 1 h, the
latency was considered to be 60 min [37]. For statistical analysis, STATISTICA 12.0 for Win-
dows was used. Data are reported as the mean ± standard error of mean (mean ± SEM).
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The level of statistical significance was considered as p < 0.05. Statistical differences between
groups were analyzed using the parametric Student’s t-test in cases of normal distribution;
nonparametric Mann–Whitney U-tests in its absence. For the results in the alternative
form (lethality, percentage of mice with clonic and tonic convulsions) the Fisher’s angular
transformation (with Yates’s correction, if necessary) was used.

3. Results and Discussion
3.1. Chemical Synthesis and Drug-Likeness Properties

The general synthetic strategy of the present work included two approaches for
target thiazole–4-thiazolidinone hybrids and darbufelone analogues: (1) based on a 4-
thiazolidinone core formation with the next modification at the C-5 position of heterocycle
(Scheme 1A); and (2) using of ready cyclic precursor (4) for modification at the C-5 position
following Knoevenagel condensation (Scheme 1B).
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Scheme 1. Synthetic pathways to target derivatives Les-6290, Les-6291, Les-6296. Reagent and
conditions: (i) 1a,b (10 mmol), ClCH2COOH (10 mmol), Et3N (10 mmol), dioxane anhydrous (10 mL),
reflux, 30 min; (ii) 2a,b (10 mmol), NH4SCN (20 mmol), acetone (20 mL), reflux 3 h; (iii) 3a,b or 4
(10 mmol), appropriate aromatic aldehyde (12 mmol), AcONa anhydrous (10 mmol), AcOH glacial
(10 mL), reflux 3 h.

Initially, N-(thiazol-2-yl)- and N-(5-acetyl-4-methylthiazol-2-yl) 2-chloroacetamides
(2a,b) were obtained from the appropriate aminothiazoles 1a,b (Scheme 1A). The aforemen-
tioned acylation reaction was performed under reflux for 30 min due to weak reactivity
of the amino groups of the compounds 1a,b. Synthesized derivatives 2a,b were utilized
as equivalents of dielectrophilic synthon [C2]2+ in the [2+3]-cyclocondensation reaction
with ammonium thiocyanate in acetone providing the appropriate thiazole-bearing 4-
thiazolidinones 3a,b. Subsequently, compounds 3a,b, and 4 were transformed in the
Knoevenagel reaction (medium—glacial acetic acid; catalyst—anhydrous sodium acetate)
to obtain the target hybrids Les-6290, Les-6291, Les-6296 (Scheme 1A,B).

The compound structures were characterized and confirmed using 1H, 13C NMR, and
LC–MS spectra.

The physicochemical properties of the darbufelon and derivatives Les-6290, Les-6291,
and Les-6296 were determined based on Lipinski and Veber rules using the SwisAdme of
Swiss Institute of Bioinformatics website [38] (Table 1).
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Table 1. Drug-likeness parameters of the darbufelon and derivatives Les-6290, Les-6291, and Les-6296 according to Lipinski
and Veber rules.

Compounds/
Drugs

Lipinski Rules Veber Rules Violations of
RulesMW ≤ 500 Log P ≤ 5 NHD ≤ 5 NHA ≤ 10 NBR ≤ 10 TPSA ≤ 140

Darbufelon 332.46 2.88 2 3 3 100.98 0
Les-6290 471.64 3.81 2 5 6 145.19 1
Les-6291 249.25 1.19 1 4 2 126.57 0
Les-6296 415.57 3.41 2 4 5 128.12 0

NHD: number of hydrogen bond donors; NHA: number of hydrogen acceptors; NBR: number of rotatable bonds; TPSA: total polar
surface area.

All tested compounds complied with Lipinski’s rule of five. Meanwhile, derivative
Les-6290 had a total polar surface area value higher (145.16, accordingly) than limited
(≤140), in line with Veber’s rules.

3.2. Anticonvulsant Activity of Synthesized Compounds

The anticonvulsant activity of darbufelon and derivatives Les-6290, Les-6291, and Les-
6296 were evaluated using an scPTZ test and studies results are presented in Figure 1
and Table 2. The reference drug, sodium valproate, showed an expressive anticonvulsant
effect, maximally preventing seizures in animals. Meanwhile, the other reference drug,
phenytoin, at a dose of 40 mg/kg, affected only the latent period of seizures, and increased
them 1.73-fold. Additionally, the phenytoin impact on lethality decrease was inexpressive
(only 19%), which could be explained by the predominant blocking of potential-dependent
sodium channels [37], i.e., insufficient compliance of the PTZ-induced seizure mechanism.

Table 2. Anticonvulsant activity of the reference drugs, celecoxib, dual COX-2/5-LOX inhibitor darbufelone methanesul-
fonate and derivatives Les-6290, and Les-6291, Les-6296 in the scPTZ test. Each value represents the mean ± S.E.M. obtained
from 6 mice.

Group of
Animals

Dose,
mg/kg

Number of Clonic-Tonic
Seizures per Mouse

Mice with Seizures, % Seizure Severity,
Points

Lethality, %
Clonic Tonic

CP(PTZ) 90 2.29 ± 0.52 100 85.71 5.57 ± 0.43 85.71
SV 300 0.00 ± 0.00 ** 0 ** 0 ** 0 ** 0 **

PHT 40 1.17 ± 0.17 100 66.67 5.00 ± 0.63 66.67
CXB 4 2.00 ± 0.37 100 66.67 4.67 ± 0.62 50.00
DAR 100 1.17 ± 0.17 100 100 4.00 ± 0.00 * 0.00 **

Les-6290 100 1.67 ± 0.56 83.33 ** 50.00 3.67 ± 0.84 * 16.67 **

Les-6291 100 1.00 ± 0.00 * 100 66.67 4.33 ± 0.56 33.33 *
53 1.00 ± 0.63 50.00 ** 33.33 * 2.50 ± 1.20 * 33.33 *

Les-6296 100 1.00 ± 0.00 * 100 33.33 * 3.33 ± 0.21 ** 0.00 **
75 0.83 ± 0.17 * 83.33 ** 16.67 ** 2.67 ± 0.56 ** 0.00 **

CP(PTZ), control pathology; SV, sodium valproate; PHT, phenytoin; CXB, celecoxib; DAR, darbufelone methanesulfonate; * p < 0.05;
** p < 0.01 compared to the group control pathology (CP (PTZ)).

The administration of the selective COX-2 inhibitor celecoxib at a dose of 4 mg/kg
resulted in a moderate anticonvulsant activity in the scPTZ test. In the experimental condi-
tions, by treatment of celecoxib, the proportion of animals with tonic seizures insignificantly
reduced (at 19.04%); the animal lethality decreased (at 35.71%); and the period of latency
was equal compared to the control pathology (PTZ)(CP(PTZ)) group.

Meanwhile, the administration of dual COX-2/5-LOX inhibitor darbufelone methane-
sulfonate at a dose of 100 mg/kg resulted in prolonging the latency 2.3-fold, reducing the
severity of the seizures (at 28.18%), reducing the length of the seizure period by 9.76-fold,
and showed an absolute protective effect on lethality (0%) compared to the CP(PTZ)-group.
Additionally, the administration of darbufelone methanesulfonate led to prolonging the
latency period by 2.09-fold and reducing the duration of the convulsive period by 7.86-
fold in comparison with the animal group which received celecoxib. Considering the
more pronounced anticonvulsant effect of darbufelone methanesulfonate, it is logical to
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assume that both prostaglandins and leukotrienes play an important role in the mech-
anism of convulsive syndrome. Thus, dual impact on COX-2/5-LOX could be a more
effective component for the presence of anticonvulsant effect than only the inhibition of
prostaglandins synthesis.

The administration of Les-6291 at a dose of 100 mg/kg (p < 0.05) led to reducing
the number of paroxysms per one animal by 2.29-fold. Additionally, the duration of
the convulsive period was significantly reduced compared to both the CP(PTZ) group
(p < 0.01) and the phenytoin group (p < 0.05). The life expectancy of animals to death was
significantly (p < 0.05) reduced by 4.49-fold. However, the lethality to animals decreased,
to 52.38% (p < 0.05). After the administration of the compound Les-6291 at a dose of
53 mg/kg (equivalent to a dose of 40 mg/kg of phenytoin), the latency period of the
first convulsions was significantly (p < 0.01) increased by 7.36-fold; the number of clonic
and tonic paroxysms was reduced to 50% and 52.38% accordingly, as well as the reduced
severity of seizures (by 2.23-fold) and lethality (52.38%).

The derivative Les-6291 possessed anticonvulsant activity at both the used doses (100
and 53 mg/kg). A reduced number of animals with clonic seizures at 100.00% (for dose
100 mg/kg) and at 50.00% (for dose 53 mg/kg), with p < 0.01, as well as reducing the
convulsive period duration to 0.10 ± 0.00 min (for dose 100 mg/kg) and to 7.08 ± 3.80 min
(for dose 53 mg/kg), with p < 0.05, was observed in the experiment.

The use of compound Les-6290 led to a statistically significantly (p < 0.01) reduced
number of animals with clonic seizures at 16.67%, and also reduced the number of mice
with tonic convulsions compare with the CP (PTZ) group. Additionally, the administration
of Les-6290 significantly reduced the number of animals with the most dangerous tonic
seizures at 50% (p < 0.01), and at 16.67% with clonic seizures compared to the data obtained
in the current experiment for the darbufelone-treated group. The severity of seizures
statistically (p < 0.05) decreased by 1.52-fold, and lethality decreased to 69.04% compared
with the CP(PTZ) group after administration of the compound Les-6290.

The compound Les-6296 was found to be the most potent in the experiment and
showed expressive anticonvulsant activity at both doses (100 and 75 mg/kg), which was
equivalent to a dose of darbufelone methanesulfonate. The administration of Les-6296
at both mentioned doses promoted full animal survival, reduced the seizure duration
period, and reduced the severity of paroxysms. The use of compound Les-6296 (at a
dose of 100 mg/kg) significantly (p < 0.05) led to a reduced number of animals with tonic
convulsions. Meanwhile, administration at a dose of 75 mg/kg reduced the percentage
of animals both with tonic (at 69.04%) and with clonic (at 16.67%) convulsions compared
with the CP(PTZ) group. Additionally, compound Les-6296 in both administration doses
reduced the percentage of animals with both clonic and tonic paroxysms and showed an
absolute protective effect against lethality (0%) compared with the group treated with
darbufelone.

It should be noted that the action of compounds Les-6290 and Les-6291 reduced the
time to death at a dose of 100 mg/kg (Figure 3C). This observation does not mean that
these compounds increase the risk of death, because, as shown in Table 2, they reduced
the severity of seizures and significantly reduced the integral indicator—mortality. In par-
ticular, only one and two mice, from six in each group, died under the administration
of compounds Les-6290 and Les-6291, respectively. Additionally, just these mentioned
individual animals were characterized with convulsive syndrome which was more severe
than in other animals. This led to fairly rapid death, the time of which did not exceed the
fluctuations of the corresponding indicator of other groups. In the other animals treated
with Les-6290 and Les-6291, the seizures stopped fairly quickly.
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Figure 3. Anticonvulsant activity of the reference drugs, celecoxib, dual COX-2/5-LOX inhibitor darbufelone methane-
sulfonate and derivatives Les-6290, Les-6291, and Les-6296 in the scPTZ test: (A) latency to the first seizure episode;
(B) duration (period) of seizures; (C) time to death. Each value represents the mean ± S.E.M. obtained from 6 mice. CP(PTZ),
control pathology; SV, sodium valproate; PHT, phenytoin; CXB, celecoxib; DAR, darbufelone methanesulfonate; * p < 0.05;
** p < 0.01 compared to the group control pathology (CP (PTZ)).

In a series of darbufelone and synthesized 4-thiazolidinone hybrids/analogues, the fol-
lowing sequence of decreasing anticonvulsant activity potency was observed: Les-6296
(75 mg/kg) > darbufelone methanesulfonate (100 mg/kg) > Les-6296 (100 mg/kg) > Les-
6290 (100 mg/kg) > Les-6291 (53 mg/kg and 100 mg/kg). From the structure–activity
relationship, it should be noted that presence of the thiazol-2-yl-amine substituent at
position C-2 and 3,5-di-tert-butyl-4-hydroxybenzylidene moiety in position C-5 into 4-
thiazolidinone molecule are optimal for anticonvulsant effects.

In this study, it was established that the selective COX-2 inhibitor celecoxib, dual COX-
2/5-LOX inhibitor darbufelone methanesulfonate, and its derivatives, significantly reduced
scPTZ-induced seizures in mice. The remarkable role of neuroinflammation in epileptogen-
esis was confirmed [6–8]. Therefore, anti-inflammatory agents would make a significant
contribution to reductions in the progression of seizures in various experimental mod-
els [15–19]. The moderate protective effect of celecoxib has been confirmed in our study,
which corresponds with literature data about the protective role of COX-2 inhibitors in
the PTZ models [20,36,39]. This stimulates further research in the synthesis of new anti-
convulsants with anti-inflammatory properties, especially among 4-thiazolidinones with
polypharmacological properties.
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4. Conclusions

In the present work, anticonvulsant activity screening study of dual COX-2/5-LOX
inhibitor darbufelone methanesulfonate, as well as the design and synthesis of structural
analogues of darbufelone, and evaluation of their anticonvulsant properties were described.
Darbufelone possesses anticonvulsant properties in the scPTZ model in mice at doses of
100 mg/kg and presents interest for in-depth studies as a possible anticonvulsant multi-
target agent with anti-inflammatory activity. Structure analogues/hybrids of darbufelone
with thiazole moieties at position C-2 of the basic molecule, especially compound Les-
6296, demonstrated a significant protection level for animals in the scPTZ model, which
was equal to or more potent than for darbufelone alone. The described structure ana-
logues/hybrids of darbufelone with thiazole moieties are promising compounds for the
design of potential anticonvulsants with satisfactory drug-like parameters.
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