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Abstract

Background: Saffron or stigmas of Crocus sativus L. is one of the most valuable food products with interesting
health-promoting properties. C. sativus has been widely used as a coloring and flavoring agent. Stigmas secondary
metabolites showed potent cytotoxic effects in previous reports.

Methods: The present study investigated the chemical composition and the cytotoxic effect of Ukrainian saffron
crude extracts and individual compounds against melanoma IGR39, triple-negative breast cancer MDA-MB-231, and
glioblastoma U-87 cell lines in vitro using MTT assay. Several bioactivity in vitro assays were performed. The
chemical profile of the water and hydroethanolic (70%, v/v) crude extracts of saffron stigmas was elucidated by
HPLC-DAD analysis.

Results: Seven compounds were identified including crocin, picrocrocin, safranal, rutin, apigenin, caffeic acid, ferulic
acid. Crocin, picrocrocin, safranal, rutin, and apigenin were the major active constituents of Ukrainian C. sativus
stigmas. The hydroethanolic extract significantly reduced the viability of MDA-MB-231 and IGR39 cells and the effect
was more potent in comparison with the water extract. However, the water extract was almost 5.6 times more
active against the U-87 cell line (EC50 of the water extract against U-87 was 0.15 ± 0.02 mg/mL, and EC50 of the
hydroethanolic extract was 0.83 ± 0.03 mg/mL). The pure compounds, apigenin, and caffeic acid also showed high
cytotoxic activity against breast cancer, melanoma, and glioblastoma cell lines. The screening of the biological
activities of stigmas water extract (up to 100 μg/mL) including anti-allergic, anti-virus, anti-neuraminidase, and anti-
inflammatory effects revealed its inhibitory activity against neuraminidase enzyme by 41%.
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Conclusions: The presented results revealed the qualitative and quantitative chemical composition and biological
activity of Crocus sativus stigmas from Ukraine as a source of natural anticancer and neuraminidase inhibitory
agents. The results of the extracts’ bioactivity suggested future potential applications of saffron as a natural remedy
against several cancers.
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Background
Saffron (C. sativus stigmas) is one of the most expensive
spices that is cultivated in a few countries around the
world [1]. The peculiarity of this spice along with its
unique color and taste attracted the attention of scien-
tists to investigate its nutritional and therapeutic proper-
ties [1, 2]. Saffron was used as a medicinal plant long
before its use as a spice [3]. The healing properties of
saffron against many human diseases were documented
by ancient Mediterranean, Persian, and Arabian civiliza-
tions. Since the beginning of the twentieth century, a
plethora of studies investigated the chemical and thera-
peutic properties of saffron using modern analytical,
pharmacological, and clinical techniques to confirm its
traditional use [2, 3].
The main producing countries of C. sativus are Iran,

Morocco, and Spain. Italy, India, and France produce
fewer quantities [2, 3]. The cultivation area of saffron is
limited by environmental factors that affect its ontogen-
esis. Since 2015, Ukrainian farmers started the wide-
spread cultivation of saffron for food-grade purposes [4].
Climatic conditions including temperature, humidity,
light radiation, altitude, and soil conditions are different
across Ukraine. These differences may affect the chem-
ical composition and consequently the pharmacological
properties of C. sativus harvested from different areas in
Ukraine. Saffron is gaining popularity in Ukraine not
only as a spice but as a medicinal raw material in folk
medicine for eye diseases, diabetes, acute respiratory
viral diseases, and cancers [5, 6]. According to the inter-
national standards (ISO/Technical Specification 3632),
saffron stigmas from Ukraine are considered of high
quality [4]. However, a complete chemical analysis of
saffron cultivated in Ukraine has not yet been
performed.
Cancer is one of the most devastating diseases that

usually requires treatment with surgery and chemother-
apy. These chemotherapeutics are known for dreadful
effects on the quality of life and resistance triggering
properties [7]. Therefore, there is a continuing need to
search for alternative treatments from natural sources to
decrease the dependence on chemical therapeutic agents
and reduce chemotherapeutics’ toxic side effects. Among
various uses of saffron, it is also considered a potential
antitumor natural remedy [3]. The literature contains
encouraging data on the antitumor activity of various

saffron extracts and their components [8, 9], thus our at-
tention was drawn to investigate the effects against some
of the less-studied cancer cell lines.
The objective of this study was to compare the phyto-

chemical content of the water and hydroethanolic (70%,
v/v) crude extracts of C. sativus stigmas. The cytotoxic
activity of the extracts and several individual compounds
of saffron stigmas was evaluated against human melan-
oma IGR39, triple-negative breast cancer MDA-MB-231,
and glioblastoma U-87 cell lines. Additionally, various
bioactivities including antiallergic, anti-inflammatory,
anti-viral, or anti-neuraminidase bioactivities of the
water extract were assessed.

Methods
Reagents and chemicals
Acetonitrile and methanol were of HPLC grade and pur-
chased from Roth GmbH (Karlsruhe, Germany). Refer-
ence compounds (crocin, safranal, apigenin, rutin, caffeic
acid, ferulic acid, chlorogenic acid, gallic acid) were pur-
chased from ChromaDex (Santa Ana, CA), Sigma-
Aldrich (Saint Louis, MO), HWI Analytik GmbH, and
Roth GmbH (Karlsruhe, Germany).

Plant material
Crocus sativus L. (Iridaceae family) flowers were col-
lected from the plantation in the village Lyubimivka
(Kherson region, Ukraine) in November 2019 in accord-
ance with the WHO Guidelines on Good Agricultural
and Collection Practices (GACP) [10, 11]. The permis-
sion for harvest was obtained from the farmers accord-
ing to the cooperation agreement. The raw material was
collected and identified by Dr. Mykhailenko and the
identification was verified by Dr. Gamulya (V.M. Karazin
Kharkiv National University, Kharkiv, Ukraine). A speci-
men was deposited at the Herbarium of V.M. Karazin
Kharkiv National University, Ukraine (CWN, voucher
specimen No. CWN0056541). The flowers were col-
lected manually, then the stigmas (saffron) were sepa-
rated and dried for 2–3 h at 50 °C under forced air.
Dried stigmas were stored in dark glass jars at 4 °C.

Preparation of C. sativus stigmas extracts
Water extract of C. sativus stigmas. Saffron was ground
in a mortar using a pestle. 5 g of stigmas powder was
macerated with hot distilled water (500 ml, 80 °C) [12,
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13], kept in a dark place for 24 h, then the extract was
filtered. Maceration was repeated 2 more times with the
residue under the same conditions. The resulting mix-
tures were combined, filtered, dried on a rotary evapor-
ator at 80 °C.
C. sativus stigmas hydroethanolic (70%, v/v) extract

was obtained with the same above method using etha-
nol/water 70/30 (v/v) (5 g, 500 mL) instead of water as
the extracting solvent.

Sample preparation for analysis
The dried extract (water and hydroethanolic, the weight
of each sample was 0.01 g) was extracted with 10 mL of
methanol using an ultrasonic bath at room temperature
(20 ± 2 °C) for 30 min. The solution was filtered using a
membrane filter (0.45 μm) before use. An aliquot of
10 μL was injected into the HPLC system for analysis. A
standard solution was prepared by dissolving reference
compounds including crocin, safranal, rutin, caffeic acid,
chlorogenic acid, gallic acid, ferulic acid, and apigenin in
methanol (1.0 mg/mL). These solutions were used for
calibration. All samples were kept at 4 °C before use.

HPLC conditions
Chromatographic separation of compounds was carried
out using an ACE C18 column (250 mm × 4.6 mm,
5.0 μm; Pennsylvania, USA). Elution was performed at a
flow rate of 1 mL/min. The binary solvent system of the
mobile phase consists of solvent A (0.1% acetic acid in
water) and solvent B (acetonitrile). All solvents were fil-
tered through a 0.23 μm membrane filter after ultrasonic
degassing. A gradient elution was applied: 0 min – 95%
A and 5% B, 7 min – 95% A and 5% B, 67 min – 0% A
and 100% B, 69 min – 95% A and 5% B, 75 min – 95% A
and 5% B. The column temperature was constant at
25 °C. The injection volume of the sample solution was
10 μL. The standard solutions including crocin, safranal,
rutin, apigenin, caffeic acid, chlorogenic acid, gallic acid,
and ferulic acid were used for the calibration of a stand-
ard curve using an external standard method. The picro-
corcin content in the extracts was recalculated as

safranal equivalent. Analysis was performed in duplicate.
Validation of the HPLC method was performed accord-
ing to certain parameters [14] including specificity, lin-
earity, precision, the limit of detection (LOD), and limit
of quantitation (LOQ) (Tables 1 and 2).

Apparatus
Liquid chromatography separation was performed using
the Shimadzu Nexera X2 LC-30 AD HPLC system (Shi-
madzu, Japan) formed of a quaternary pump, an on-line
degasser, a column temperature controller, the SIL-30
AC autosampler (Shimadzu, Japan); the CTO-20 AC
thermostat (Shimadzu, Japan), SPD-M20A diode array
detector (DAD). Ultrasonic Cleaner Set as used for
ultra-sonication (Wise Clean WUC-A06H, Witeg Labor-
technik GmbH, Germany), рН-meter – Knick Electronic
Battery-operated pH Meter 911 PH (Portamess,
Germany), rotary evaporator (Heidolph 2 WB eco,
Laborata400 efficient, Germany).

Data analysis
All data processing was carried out using LabSolutions
Analysis Data System (Shimadzu Corporation). Statis-
tical analysis was performed by one-way analysis of vari-
ance (ANOVA) followed by Tukey’s multiple
comparison test with the software package Prism v.5.04
(GraphPad Software Inc., La Jolla, CA, USA). A p-value
< 0.05 was considered significant.

Cell culture
Human melanoma cancer cell line IGR39, human triple-
negative breast cancer cell line MDA-MB-231, and hu-
man glioblastoma U-87 cell lines were obtained from the
American Type Culture Collection (ATCC, Manassas,
VA, USA). Cells were grown in DMEM Glutamax
medium (Gibco, Carlsbad, CA, USA) containing 10%
fetal bovine serum and 1% antibiotic mixture (10,000 U/
mL penicillin and 10 mg/mL streptomycin; Gibco). All
cells were incubated at 37 °C in a humidified atmosphere
containing 5% CO2.

Table 1 Calibration curves of the quantified reference standard compounds

Compound Calibration curveа Correlation coefficient r2 (n = 6) Linear range (μg/mL) RSD, % LODb (ng/mL) LOQc (ng/mL)

1 Caffeic acid y = 57,646.8x-3853.48 0.9999218 0.72–91.92 1.56 20 60

2 Ferulic acid y = 54,955.4x - 638.345 0.9999592 0.44–56.5 1.60 30 80

3 Rutin y = 16,072.5x + 1499.73 0.9998787 0.16–20.24 1.07 96 290

4 Crocin y = 3789.03x + 220.836 0.999588 1.15–147.2 1.28 100 300

5 Apigenin y = 50,138.3x + 5722.97 0.9998899 0.2–25.76 0.53 25 80

6 Safranal y = 39,230.1x-11,887.2 0.999529 1.33–42.56 1.35 120 360

7 Gallic acid y = 32,880.6x-612.983 0.9999718 0.48–61.08 1.31 30 100

8 Chlorogenic acid y = 29,930.2x-538.361 0.9999502 0.36–46 1.29 20 70

Note: aconcentration of compound (mg/mL); y, peak area; bLOD, limit of detection (S/N = 3); cLOQ, limit of quantification (S/N = 10)
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Cell viability assay
The cells were treated with saffron extracts and their
viability was determined by the MTT assay (Sigma-Al-
drich Co.) as described elsewhere [15]. The cells were
exposed to various concentrations of the tested extracts
(from 1mg/mL to 31.25 μg/mL), and after measurement
of formazan solution absorbance, EC50 (half-maximal ef-
fective concentration of a drug/extract at which 50% of
its maximum response is observed) values were
calculated.

Antiallergic activity in RBL-2H3 cells
A methylthiazole tetrazolium (MTT) assay was used to
measure the possible toxic effects of the samples on
RBL-2H3 cells as previously described [16]. The max-
imally tolerated dose of DMSO was 0.5%, not affecting
RBL-2H3 cell growth. Triton X- 100 (0.5% solution) was
used as the positive control causing the death of all cells
in a well. The water stigmas extract was then subjected
to an anti-allergic degranulation assay based on β-

hexosaminidase release in RBL-2H3 mast cells induced
by calcium ionophore (A23187) or antigen (IgE plus
DNP-BSA) according to the previous methodology [17,
18]. Briefly, RBL-2H3 cells seeded in the 96-wells plate
(2 × 104 cells/well, A23187-induced assay) or 48-wells
plate (3 × 104 cells/well, antigen-induced assay) at 37 °C
in 5% CO2 atmosphere for at least 5 h. then they were
treated with samples or medium (untreated control) for
20 h. Cells were stimulated by the addition of calcium
ionophore A23187 (1 μM) or cross-linking antigen DNP-
BSA (100 ng/mL) to previously sensitized cells with anti-
DNP IgE (0.1 μg/mL). After 1 h of incubation, the un-
stimulated cells were either lysed with 0.5% Triton X-
100 solution for the total amount of β-hexosaminidase
release or left untreated for the spontaneous release of
β-hexosaminidase. Then aliquots of the wells’ superna-
tants (50 μL) were incubated with an equal volume
(50 μL) of 1 μM of p-NAG (p-nitrophenyl-N-acetyl-β-D-
glucosaminide, in 0.1 M citrate buffer, pH 4.5) serving as
the substrate for the released β-hexosaminidase. After 1

Table 2 Precision and repeatability of the quantified compounds

Compound Concentrate
(μg/mL)

Precision Repeatability

Intra-Day (n = 3) Inter-Day (n = 3) Recovery
(%)

RSD
(%)RSD (%) Accuracy (%) RSD

(%)
Accuracy (%)

1 Caffeic acid 11.49 1.05 102.02 0.52 98.49 100.01 0.46

45.96 1.08 98.78 0.67 99.73 99.39 0.99

91.92 0.64 100.35 0.95 98.17 100.17 0.37

2 Ferulic acid 7.06 0.68 100.22 0.90 98.29 99.11 0.69

28.25 0.93 98.20 0.29 99.31 99.60 0.57

56.5 1.22 100.24 0.46 98.28 100.12 0.49

3 Rutin 2.53 1.26 100.35 0.62 100.15 100.18 0.55

10.12 1.29 101.12 0.80 99.21 100.65 0.92

20.24 0.76 99.56 1.14 100.94 99.78 0.31

4 Crocin 1.23 0.87 102.5 0.80 101.36 101.07 0.85

18.4 1.25 99.19 0.91 100.37 98.99 1.06

73.6 1.22 98.97 0.81 100.27 100.29 0.98

5 Apigenin 4 0.74 100.75 0.57 98.76 100.56 0.79

16 0.89 100.89 0.29 98.62 98.96 0.71

32 0.88 100.70 0.70 98.03 99.80 1.02

6 Safranal 1.33 0.57 101.53 0.67 101.07 100.27 0.65

10.64 0.78 98.68 0.53 99.14 99.58 0.77

42.56 1.02 100.47 0.86 100.12 99.14 1.04

7 Gallic acid 7.65 0.57 99.81 0.75 101.37 101.07 0.65

30.35 0.78 99.56 0.24 102.14 99.69 0.56

61.20 1.02 101.53 0.38 101.32 100.09 0.94

8 Chlorogenic acid 5.75 1.31 101.12 0.38 98.40 100.69 0.86

23 0.42 99.08 0.73 99.43 99.58 1.05

46 0.96 100.27 0.48 98.24 101.91 0.97
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h of incubation at 37 °C, the reaction was quenched by
the addition of 100 μL of stop buffer (0.1 M Na2/
NaHCO3, pH 10.0). Absorbance was measured at 405
nm on a microplate reader and the percentage inhibition
of β-hexosaminidase release was calculated.

Anti-inflammatory activity in human neutrophils
Blood was taken from healthy human donors using a
protocol approved by the Chang Gung Memorial Hos-
pital review board. Neutrophils were isolated following
the standard procedure [19]. The inhibition of super-
oxide anion generation (respiratory burst) was measured
based on ferricytochrome c reduction as previously de-
scribed [20]. Briefly, preheated neutrophils (6 × 105

cells·mL− 1) and 0.5 mg/mL ferricytochrome c solution
were treated with the tested compounds or DMSO (con-
trol) for 5 min, and activated with formyl-methionyl-
leucyl-phenylalanine (fMLF, 100 nM)/cytochalasin B
(CB, 1 μg/mL) for 10 min. The absorbance was continu-
ously monitored at 550 nm using Hitachi U-3010 spec-
trophotometer with constant stirring (Hitachi Inc.,
Tokyo, Japan). Calculations were based on the differ-
ences in absorbance with and without superoxide dis-
mutase (SOD, 100 U/mL) divided by the extinction
coefficient for the reduction of ferricytochrome c (ε =
21.1/mM/10mm). Elastase release (i.e., degranulation
from azurophilic granules) was evaluated as described
before [21]. Briefly, neutrophils were equilibrated with
elastase substrate, MeO-Suc-Ala-Ala-Pro-Val-p-nitroani-
lide (100 μM), at 37 °C for 2 min and then incubated
with the sample for 5 min. Cells were activated by 100
nM fMLF and 0.5 μg/mL CB, and changes in the absorb-
ance at 405 nm corresponding to elastase release were
continuously monitored. The results were expressed as
the percent of the initial rate of elastase release in the
fMLF/CB-activated drug-free control system.

Lipid droplet assay
Lipid droplet assay was performed according to a pre-
vious method using a BSA-conjugated oleic acid sys-
tem in Huh7 cells as described previously [22].
Briefly, cells seeded in μClear® 96-wells plates (Grei-
ner Bio-ONE, Frickenhausen, Germany) were treated
with oleic acid and the tested sample or DMSO for
18 h. Paraformaldehyde was used to fix the cells,
which were stained with 2 μg/mL Hoechst 33342 and
1 μg/mL BODIPY® 493/503. High Content Imaging
(HCS) instrument was used to take and analyze im-
ages of the nuclei and lipid droplets (ImageXpress
Micro System, Molecular Devices, Sunnyvale, CA,
USA). The diameter settings were 8–25 μm for the
nuclei and 0.5–2 μm for the lipid droplets.

NRF2 activity
Nuclear transcription factor NRF2 activity was evaluated
in HacaT normal cells and Huh7 cancer cells according
to a previous methodology [23]. The cell line HaCaT/
ARE (antioxidant response element) was developed
using a HaCaT stable cell line carrying a fragment de-
rived from pGL4.37[luc2P/ARE/Hygro] plasmid and the
luciferase reporter gene luc2P. The reporter cells were
cultured in Dulbecco’s Modified Eagle’s Medium
(DMEM) (Gibco BRL, Grand Island, NY, USA) supple-
mented with penicillin (100 U/mL), streptomycin
(100 μg/mL), 10% heat-inactivated fetal bovine serum
(HyClone, Logan, UT, USA), and 100 μg/mL hygromycin
at 37 °C in 5% CO2. The cells were seeded (1 × 104 cells/
well) in a 96-wells plate and treated with the sample for
18 h (single measurement). Resazurin (Cayman Chem-
ical, Ann Arbor, MI, USA, final concentration of 0.1 mg/
mL) was added and the cells were incubated for an add-
itional 4 h at 37 °C. Fluorescence of the reduced resa-
zurin in the supernatant of the cells (ex/em: 530 nm/590
nm) was detected using a Synergy HT Multi-Mode
Reader (BioTek, Winooski, VT, USA) to determine cell
viability. The cells were then harvested, and luciferase
activity was measured according to the manufacturer’s
protocol (Promega Corporation, Madison, WI, USA).
The luciferase activity was normalized to cell viability.

Protective against influenza and enterovirus
The anti-viral assay was performed by cytopathic effects
of the extracts on the cells infected by influenza H1N1
[24], and enterovirus D68 [25]. Briefly, the 96-well tissue
culture plates were seeded with MDCK cells (2 × 104 per
well) or RD cells (2 × 104 cells /well) in E10 medium
(DMEM containing 10% FBS, 100 U/mL penicillin
(Gibco, USA), 100 μg/mL streptomycin (Gibco, USA), 2
mM L-glutamine (L-glutamine) (Gibco, Brazil), 0.1 mM
nonessential amino acid mixture (NEAA, Gibco, USA)
and incubated under 5% CO2 for 16–24 h at 37 °C. Then,
the culture medium was withdrawn and the wells were
washed once with Dulbecco’s phosphate-buffered saline
(DPBS). The cells were infected with influenza virus (A/
WSN/33) or enteroviruses at a nine-fold median tissue
culture infective dose, with or without the addition of
the samples. The treated cells were further incubated for
72 h at 37 °C. After 72 h, the medium was removed, and
the cells were fixed with 4% paraformaldehyde for 1 h at
room temperature. Then, 0.1% crystal violet was used to
stain the cells for 20 min at room temperature. The cells
density was measured by using a VICTOR3™ multilabel
plate reader (PerkinElmer).

Neuraminidase activity assay
A baculovirus displayed neuraminidase NA9 on the sur-
face (NA9-Bac) as a pseudotyped influenza virus was
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used to evaluate the neuraminidase activity. An appro-
priate virus load of NA9-Bac was added into a 96-well
plate and incubated with the extracts or compounds for
20 min at 37 °C. Then, each well was supplemented with
25 μL of diluted fluorescent MUNANA substrate. After
incubation for 30 min at ambient temperature, 150 μL of
stop solution was added. The fluorescence intensity was
immediately detected using Synergy HT Multi-Mode
Microplate Reader (BioTek). Zanamivir, a known neur-
aminidase inhibitor, was used as a positive control in
this assay.

Results and discussion
According to the reported data, the cytotoxic properties
against different cancer cell lines were found for both
the water and hydroethanolic extracts of C. sativus stig-
mas [1–3, 7, 9]. However, the research on the cytotoxic
properties of Crocus spp. extracts against melanoma
IGR39, triple-negative breast cancer MDA-MB-231, and
glioblastoma U-87 cell lines is still lacking. Therefore,
we studied the chemical composition and cytotoxic ac-
tivity of Ukrainian saffron crude extracts against these
cell lines, in addition to other bioactivities screening, to
understand the potential applications of this medicinal
plant.

HPLC method validation
A validation study was conducted to demonstrate the
applicability of the developed analytical method. The
validation was done in terms of specificity, linearity,
LOD, LOQ, precision, and recovery according to the
International Conference on Harmonization guidelines
[14]. The results are summarized in Tables 1 and 2. The
regression equation for each reference standard com-
pound, together with the LOD and LOQ values, are
shown in Table 1. All the calibration curves showed ac-
ceptable linear regression (r2 ≥ 0.999). The overall intra-
day and interday precision RSDs were not more than
2.0%. The overall stability over 24 h and repeatability
were not more than 2.0% for both parameters. The de-
veloped analytical method showed excellent precision
with overall recovery in the range from 98 to 101%
(RSD ≤ 2.0%) for all compounds. Therefore, the method
was precise, accurate, and sensitive enough for the sim-
ultaneous quantitative evaluation of all compounds in C.
sativus extracts.
The specificity is the ability of a method to discrimin-

ate between the study analytes and other constituents in
the sample. Specificity was demonstrated by the separ-
ation of the analytes from other interfering compounds.
The determination of the main compounds in the tested
solutions was done by comparing the retention times of
the peaks and UV-spectrum with those of the standard

solution. The results showed that the conditions for the
fingerprint analysis were repeatable and precise.

Qualitative and quantitative analysis of the compounds
The extraction of the biologically active components
from C. sativus stigmas was carried out under optimal
conditions by maceration at room temperature in the
dark to minimize the decomposition of the phenolic
compounds and carotenoids [26]. To identify the com-
position of the active ingredients in the tested extracts,
an HPLC-DAD method was used. The HPLC chromato-
grams of Crocus water and hydroethanolic (70%, v/v)
crude extracts are shown in Figs. 1, 2 and 3. The deter-
mination of the compounds in the tested extracts was
done by comparing the peak retention times and the UV
spectra obtained from the chromatogram of the standard
solution. The results of the components of the analysis
of the crude extracts of Ukrainian C. sativus stigmas are
presented in Table 3. Among the main and species-
specific compounds in C. sativus stigmas extracts, the
presence of crocin, safranal, and picrocrocin was ana-
lyzed. According to the published data, the quantitative
content of crocin in the dried C. sativus stigmas from
Italy, Greece, France, Spain varied depending on the
growing conditions and processing methods. It ranged
from 6 to 16% up to 30% [27].
In the current study, the content of crocin in Ukrain-

ian saffron was 38 mg/g (3.8%) in the water and 163mg/
g (16.3%) in the hydroethanolic extract, respectively
(Table 3). For comparison, the content of crocin (identi-
fied as trans-crocetin bis(β-D-gentiobiosyl) ester) in the
methanol extracts of the Iranian and Azerbaijan saffron
was 45.99 and 48.47 mg/g, respectively, and for the alco-
holic extract from the Spanish saffron, the content was
11.95 mg/g [28]. Thus, the content of crocin in Ukrain-
ian samples was at least 2–3 times higher. The high con-
tent of secondary metabolites in the Ukrainian saffron
extracts might be due to concomitant factors including
the location of the cultivation site, altitude, soil type, cli-
mate, quality of planting material, irrigation periods, and
harvest time. Previously, we investigated the chemical
composition of C. sativus stigmas from different regions
of Ukraine and the results showed high content of cro-
cin, picrocrocin, and safranal in the raw materials [4].
The content of picrocrocin was recalculated as a safra-

nal equivalent and was detected in the hydroethanolic
extract reaching the maximum limit described in the lit-
erature of 197 mg/g (19.7%). Picrocrocin was detected in
a lower concentration in the water extract (62 mg/g). In
previous studies, the content of picrocrocin was deter-
mined in the range of 7–16% in saffron samples [29].
The content of picrocrocin in saffron methanol extract
from Azerbaijan was only 26.93 mg/g. This value was
obtained using Waters HPLC system, a Spherisorb
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ODS2 column (250 × 4.6 mm internal diameter) and the
used mobile phase was a linear gradient of methanol in
water from 10 to 100% containing 15% acetonitrile [28].
In the current analysis, we applied the Shimadzu system
and ACE C18 column (250mm × 4.6 mm, 5.0 μm). The
selected gradient system of mobile phases consisted of
solvent A (0.1% acetic acid in water) and solvent B
(acetonitrile). This system provided the best peak separ-
ation. The selection of 257, 330, and 440 nm as the de-
tection wavelengths resulted in an acceptable response
and allowed the detection of all three major compounds
(crocin, picrocrocin, and safranal), phenolic acids, and
flavonoids. The column temperature was maintained at
25 °C throughout the analysis. HPLC fingerprints for C.
sativus stigmas extracts were developed.
In the studied crude extracts of Ukrainian saffron, the

safranal content was 146.6 mg/g in the hydroethanolic
and 10.81 mg/g in the stigmas water extract. In previous
studies, the content of safranal in saffron raw materials
from Spain was 6mg/g [27, 30], and for the Iranian saf-
fron, the values were 0.07–0.29 mg/g [31]. The analysis
of ethanol, water, and methanol-water extracts of saffron
stigmas from Saudi Arabia indicated the presence of

lower concentrations of crocin (10–16 mg/g) and safra-
nal (5 mg/g) in comparison with our results [32].
In addition to the esters of crocetin, picrocrocin, and

safranal, other biologically active compounds were iden-
tified in the Ukrainian saffron extracts. The current re-
search presents the first data on the identification of
flavonoid apigenin and rutin in C. sativus stigmas. It
should be noted that the content of rutin and apigenin
in the hydroethanolic C. sativus stigmas extract was sig-
nificantly higher (14.8 mg/g and 8.38 mg/g, respectively)
than in the water extract (3.07 mg/g and 0.96 mg/g).
According to the literature data, different phenolic

acids such as caffeic, chlorogenic, and gallic were
identified in the C. sativus stigmas [1]. Ferulic acid
was only found in C. cancellatus subsp. damascenus
stigmas [33]. However, in the crude extracts of
Ukrainian saffron, chlorogenic and gallic acids were
not identified. Ferulic and caffeic acids were found in
the hydroethanolic extract of the Ukrainian stigmas
extracts at 0.26 and 0.38 mg/g, respectively. In conclu-
sion, the content of all detected constituents in the
hydroethanolic extract was much higher than in the
water extract.

Fig. 1 HPLC-DAD chromatograms of C. sativus stigmas water (A pink line) and hydroethanolic (70%, v/v) (B black line) crude extracts: caffeic acid
(1); ferulic acid (2); rutin (3); apigenin (5); safranal (6). The detection wavelength was set at 310 nm
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Fig. 2 HPLC-DAD chromatograms of C. sativus stigmas water (A pink line) and hydroethanolic (70%, v/v) (B black line) crude extracts: crocin (4).
The detection wavelength was set at 440 nm

Fig. 3 HPLC-DAD chromatograms of C. sativus stigmas water (A pink line) and hydroethanolic (70%, v/v) (B black line) crude extracts: picrocrocin.
The detection wavelength was set at 250 nm
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The quantitative analysis of the biologically active
compounds in the crude extracts showed that croсin
(identified as trans-crocetin bis(β-D-gentiobiosyl) ester),
picrocrocin, and safranal were the major components of
C. sativus stigmas extracts in agreement with the litera-
ture data [27–32]. Previous studies highlighted the im-
portance of these compounds for the biological activities
of saffron [2, 3, 8, 9]. In addition to these compounds,
the presence of flavonoids with their antiproliferative
and cytotoxic activities [34] encouraged us to evaluate
the cytotoxic activity of Ukrainian saffron extracts.

Cytotoxic activity of saffron extracts
The in vitro cytotoxic activity of saffron extracts was in-
vestigated against human melanoma IGR39, triple-
negative breast cancer MDA-MB-231, and glioblastoma
U-87 cell lines (Fig. 4). Hydroethanolic (70%, v/v) crude
extract of C. sativus stigmas significantly reduced the
viability of breast cancer and melanoma cells in com-
parison with the water extract. However, the water

extract was about 5.6 times more active against the glio-
blastoma cell line (EC50 of the water extract against U-
87 was 0.15 ± 0.02mg/mL, and EC50 of the hydroethano-
lic extract was 0.83 ± 0.03 mg/mL). The higher activity of
Crocus water extract against glioblastoma cell line might
be due to the presence of hydrophilic biologically active
compounds, such as amino acids, polysaccharides, car-
boxylic acids [3, 35]. In correlation with our results, sev-
eral studies on plants such as Inula helenium [36],
Usnea longissimi [37], and Tragopogon porrifolius [38]
showed that water extracts exhibited higher activity
against human U-87 glioblastoma compared with differ-
ent ethanolic extracts. For instance, the published data
[39] indicated that crocetin, a metabolite of major saf-
fron component crocin, exhibited pronounced antitumor
properties against U251, U87MG, U373, and U138 gli-
oma cell lines. However, the saffron extract activity
against the brain cancer cell line (U-87 cell line) was not
reported before.
In other studies, saffron extracts showed anti-

proliferative activity against several types of cancer cell
lines at higher concentrations. For example, C. sativus
stigmas methanolic extract demonstrated anti-
proliferative activity against acute lymphoblastic
leukemia cells (Jurkat cell line) (EC50 = 71 ± 2.50 μg/mL)
[40]. C. sativus stigmas aqueous extract showed a dose-
dependent inhibitory effect on the growth of human
transitional cell carcinoma (TCC 5637) and mouse fibro-
blast (L929) cell lines at concentrations ranging from
400 μg/mL to 800 μg/mL [41]. Also, the stigmas aqueous
extract exhibited a potent dose-dependent antineoplastic
effect on highly metastatic murine B16-F10 melanoma
cell line (40.7 to 73.6%, at 250 to 1000 μg/ml, 72 h treat-
ment) [1]. In another study, the cytotoxic effect of saf-
fron stigmas ethanolic extract was evaluated in HepG2
and HeLa cell lines (IC50 950 and 800 μg/mL, respect-
ively, 48 h) [42]. Saffron extract inhibited the

Table 3 The content of biological active compounds (mg/g dry weight) in Crocus sativus stigmas water and hydroethanolic (70%, v/
v) crude extracts

Compounds RT,
min

λ,
nm

UV,
λ max, nm

Stigmas extract

Water Hydroethanolic

Specific compounds

Crocin 28.37 440 261, 440, 466 38.27 ± 0.03 163.02 ± 1.16

Picrocrocin 25.88 250 249, 327 62.25 ± 0.10 197.19 ± 5.60

Safranal 55.85 310 231, 312 10.81 ± 0.03 146.66 ± 3.07

Flavonoids

Rutin 22.48 310 256, 352 3.07 ± 0.02 14.81 ± 0.41

Apigenin 47.90 250 237, 267, 337 0.96 ± 0.01 8.39 ± 0.15

Hydroxycinnamic acids

Caffeic acid 14.18 310 217, 236, 342 0.11 ± 0.00 0.38 ± 0.01

Ferulic acid 21.64 310 218, 236, 323 0.13 ± 0.03 0.26 ± 0.00

Fig. 4 Cytotoxic activity of the extract against the tested cancer
cell lines
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proliferation of HCT-116 cells by 54.5% at a concentra-
tion of 1 mg/mL [43]. According to Abd Razak et al.
(2017) [44], saffron extract and its main components
could affect carcinogenesis in different models in vitro
and in vivo.
The saffron demonstrated also other activities related

to protection against cancer including radical scavenging
activity, anti-mutagenic and immunomodulatory effects
[45, 46].

Cytotoxic activity of saffron individual compounds
To better understand how the activity could be related
to the chemical composition, we evaluated the EC50

values for several major ingredients of saffron extracts
(Fig. 5). According to the results of the current study,
the most active substances against the tested breast can-
cer, melanoma, and glioblastoma cell lines were apigenin
and caffeic acid with EC50 values ranging from 123.4 to
197.6 μM. Other substances (crocin and rutin) did not
show cell viability reducing activity even at the highest
tested concentrations (up to 1 mM, data not shown).
The lack of activity of crocin and rutin in our study may
be also associated with the specificity towards the se-
lected cell lines. Previous studies on human and animal
cancer cell lines demonstrated the cytotoxic activity of
saffron as well as its main constituents (crocins, crocetin,
safranal, picrocrocin) against leukemia, carcinoma, sar-
coma, stomach, liver, prostate, cervix, ovary, breast, skin,
lung, and colorectal cancer cell models, often using high
concentrations [2, 8, 47]. For instance, the antiprolifera-
tive effects of crocin against several cancer and non-
cancer cell lines were reported, however, a very high
concentration was needed to reach an EC50 value [48–
50]. There is an evidence that high concentrations of
crocin (0.625–10 mg/mL) significantly inhibited HL-60
cell proliferation [48], as well as dose-dependently in-
duced apoptosis and cell cycle arrest at the G2/M phase
in MDA-MB-231 cells (approx. IC50 5 mg/mL, 48 h)
[49]. The authors, however, studied only the effect of an
individual compound, crocin, but did not investigate the

cytotoxic activity of saffron stigmas whole extract. The
cytotoxic bioactivity of crocin and its metabolite crocetin
was compared in lung A549, cervical HeLa, ovarian SK-
OV-3, colorectal HCT-116, liver HepG2 cell lines [50].
Crocetin (EC50 = 0.16–0.61 mmol/L), showed 5- to 18-
folds higher cytotoxicity than crocin (EC50 = 2.0–5.5
mmol/L) [50] and crocetin further inhibited proliferation
glycolytic cancer cell lines A549 and HeLa (IC50 0.11
mM for both cell lines) as well as lactate dehydrogenase
(LDH) [51].
Several studies indicated that C. sativus extracts exhib-

ited their cytotoxic effect due to the presence of not only
crocin, picrocrocin, safranal, but also a plethora of phen-
olic compounds.
Apigenin is a common dietary flavonoid that showed

the highest activity against melanoma IGR39 and breast
cancer MDA-MB-231 cell lines (EC50 values were
131.8 ± 7.2 μM and 123.4 ± 19.0 μM, respectively) in our
experiment (Fig. 5). The activity against the U-87 cell
line was lower compared with caffeic acid. The results
obtained were consistent with the previously described
data [52, 53]. Apigenin reduced MDA-MB-231 cell via-
bility at a similar concentration as in our experiments
(12, 27, 42, and 49% inhibition at 25 μM, 50 μM, 75 μM
and 100 μM, respectively) [54]. Apigenin also showed
potent antiproliferative effect against human melanoma
A375 cell line (EC50 was 33.02 μM) [52]. This activity
was higher compared to that against IGR39 cells in our
experiments which could be explained by compound
specificity against different cell lines. Previous literature
showed the antitumor efficacy of apigenin against several
types of cancer in vitro and in vivo [55]. For instance,
apigenin showed antiproliferative properties against the
glioblastoma U1242 and U87 cells [56], and human mel-
anoma A375 and C8161 cells in a concentration- and
time-dependent manner [57]. Regarding the molecular
basis of its activity, apigenin inhibited cancer cell prolif-
eration by triggering cell apoptosis, inducing autophagy,
decreasing cancer cell motility, migration, and invasion
[55], and regulating immune response [58]. Multiple sig-
naling pathways were modulated by apigenin, including
PI3K/AKT, MAPK/ERK, JAK/STAT, NF-κB, and Wnt/
β-catenin [55].
In our experiment, caffeic acid showed a similar level

of activity against the IGR39 and U-87 cell lines (EC50

values were 150.5 ± 11.4 μM and 152.3 ± 6.2 μM, respect-
ively), and a slightly lower against the MDA-MB-231 cell
line (EC50 was 197.6 ± 16.3 μM). According to the litera-
ture, caffeic acid reduced cell viability against the MCF-7
cell line (EC50 159 μg/mL) [59] and against the HCT15
cell line (approx. EC50 800 μM) in time and dose-
dependent manner [60]. Caffeic acid previously demon-
strated cytotoxic activity against SK-Mel-28 human mel-
anoma [61] as well as hepatocellular carcinoma,

Fig. 5 Anticancer activity of the tested active compounds against
different cancer cell lines
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preventing the exaggerated formation of ROS [62]. It
promoted the death of tumor cells through DNA oxida-
tion, as well as angiogenesis reduction of VEGF-induced
vascularization and the suppression of MMP-2 and
MMP-9 expression, acting as antioxidant and pro-
oxidant at the same time [62].
Rutin is a flavonol that demonstrated several pharma-

cological activities, including antioxidant, cytoprotective,
vasoprotective, anticarcinogenic, neuroprotective, and
cardioprotective activities [63]. According to different
studies, rutin could cause a significant reduction in
tumor size justifying its antileukemic potential [64].
Rutin is also known to inhibit cancer cell growth by cell
cycle arrest and/or apoptosis along with the inhibition of
proliferation, angiogenesis, and/or metastasis in colorec-
tal cell lines [63]. However, in our study rutin did not
show a substantial cell growth inhibition towards IGR39,
MDA-MB-231, or U-87 cells at concentration up to 1
mM (data not shown).
Previous literature data indicated that saffron extracts

and their constituents, crocin, crocetin, and safranal, api-
genin or caffeic acid exhibited a selective toxic effect
against cancer cells while toxicity against normal cells
was negligible in vitro [56, 62, 65, 66] or in vivo [67, 68].
The molecular mechanisms of saffron extract and its ac-
tive components are not yet fully understood, and fur-
ther studies are needed to justify the use of saffron
extracts in cancer treatment.

Bioactivity screening and anti-neuraminidase activity
For the preliminary bioactivity analysis, the water extract
of C. sativus stigmas was selected aiming to use the most
eco-friendly solvent. There is a lack of studies on the
anti-neuraminidase, anti-inflammatory, and antiviral

activity of the stigmas extracts. According to the results
(Table 4), the water extract (100 μg/mL) inhibited neur-
aminidase enzymatic activity by 41.0% in comparison
with the positive control, zanamivir (97.4% at 1 μM).
Phenolic compounds including apigenin, rutin, and caf-
feic acid were detected in Ukrainian saffron. Previous
studies indicated that plant extracts rich in phenolic
content inhibited the enzymatic activity of viral neur-
aminidase [69]. Also, the amino acid composition of the
plant extracts was shown to determine the activity
against influenza A virus neuraminidase [70, 71]. In our
previous investigation, we studied the composition of
amino acids in the water extract of C. sativus stigmas
and found high content of amino acids including tyro-
sine (326.6 μg/g), methionine (84 μg/g), and alanine
(60 μg/g) [72]. The stigmas extract was inactive in the
other bioactivity tests (Table 4), including the anti-
allergic (degranulation assay, 100 μg/mL), anti-viral (in-
fluenza H1N1 and enterovirus D68, 50 μg/mL), anti-
inflammatory (respiratory burst and degranulation,
10 μg/mL), NRF2 expression in normal and cancer cell
line (100 μg/mL), and lipid droplets assay (100 μg/mL).
Our results together with the literature data suggested
that the high content of amino acids as well as the pres-
ence of phenolic compounds may correlate with the
neuraminidase inhibitory effects of C. sativus stigmas
water extract, while its higher concentration might be
required for the other bioactivities.

Conclusion
The present study evaluated the cytotoxic activity of
Crocus sativus stigmas from Ukraine and correlated re-
sults with its major constituents, as identified by HPLC
analysis (Fig. 6). The water and hydroethanolic (70%, v/

Fig. 6 Overview of the study results on phytochemical analysis and antitumor and other bioactivities of Ukrainian saffron. Antitumor activity
against melanoma, triple-negative breast cancer, and glioblastoma cell lines was evaluated in saffron extracts as well as individual compounds
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v) extracts exhibited a cytotoxic effect against melanoma
IGR39, triple-negative breast cancer MDA-MB-231, and
glioblastoma U-87 cell lines. The water extract of saffron
stigmas possessed higher activity than the hydroethano-
lic extract against U-87 cell lines. This study also de-
scribed the HPLC method for the qualitative analysis
and quantitative determination of apocarotenoids, flavo-
noids, and phenol carboxylic acids in C. sativus stigmas
extracts. Moreover, rutin, apigenin, and ferulic acid were
identified in C. sativus stigmas for the first time. Api-
genin and caffeic acid showed activity on the selected
cancer lines. The results of the current study indicated
the need for further research to determine the mecha-
nisms responsible for the established anti-cancer activity.
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