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ANNOTATION 

The computer prediction of the possible pathways of metabolism of a potential 

API with sedative and nootropic effects, 2-methyl-3-[(2-methoxyanilino)methyl]-

1H-quinoline-4-one, was performed. It was proved, that the molecule of the test 

substance can be intensively metabolized by cytochrome P450 enzyme systems. The 

most likely biotransformation pathways are aromatic hydroxylation involving 

carbon atoms of both the quinolone heterocyclic system and the phenyl substituent, 

O-demethylation of the methoxyl group, and N-dealkylation of the aminomethyl 

fragment. The predicted direction of aliphatic hydroxylation at the methyl group at 

position 2 of the heterocycle to kynurenic acid derivatives indicates that the proven 

pharmacodynamic effects may be partially provided by these pharmacologically 

active metabolites. 

Key words: 2-methyl-3-[(2-methoxyanilino)methyl]-1H-quinolin-4-one, 

metabolism, biotransformation, computer prediction, online systems, 

pharmacological activity. 

 

АНОТАЦІЯ 

Проведено комп’ютерне прогнозування ймовірних шляхів метаболізму 

потенційного АФІ седативної та ноотропної дії 2-метил-3-[(2-

метоксианіліно)метил]-1H-хінолін-4-ону. Доведено, що молекула 

досліджуваної речовини може інтенсивно метаболізуватись за участю 

ферментних систем цитохрому Р450. Найбільш імовірними шляхами 

біотрансформації є ароматичне гідроксилювання за участю атомів карбону як 

гетероциклічної системи хінолону, так і фенільного замісника, О-

деметилювання метоксильної групи, N-деалкілування амінометильного 

фрагменту. Прогнозований напрямок аліфатичного гідроксилювання за 

метильною групою в положенні 2 гетероциклу до похідних кінуренової 

кислоти свідчить, що доведені фармакодинамічні ефекти можуть частково 

забезпечуватись саме цими фармакологічно активними метаболітами. 

Ключові слова: 2-метил-3-[(2-метоксианіліно)метил]-1H-хінолін-4-он, 

метаболізм, біотрасформація, комп’ютерне прогнозування, онлайн системи, 

фармакологічна активність. 
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INTRODUCTION 

Relevance of the topic. The qualification work is devoted to the study of 

possible metabolic pathways of 2-methyl-3-[(2-methoxyanilino)methyl]-1H-

quinolin-4-one as a promising candidate for APIs with sedative and nootropic 

properties. In vitro and in silico drug metabolism models are regularly used in drug 

research and development as tools for assessing pharmacokinetic variability and the 

risk of drug interaction. The use of in vitro and in silico predictive approaches has 

such advantages as rational design of clinical drug interaction studies, minimization 

of human risk in clinical trials, and cost and time savings due to less exhaustion in 

the compound development process. That is why the use of computer prediction of 

possible metabolic pathways of a potential drug candidate at the initial stages is a 

fully justified and effective approach that allows to identify metabolic sites, predict 

the structures of the metabolites formed, the intensity of metabolism and the 

specificity of substrates to cytochrome P450 enzymes. The chosen topic of the 

qualification work is aimed at solving these issues, which determines its relevance. 

Purpose of the study. Prediction of probable metabolic pathways of 

2-methyl-3-[(2-methoxyanilino)methyl]-1H-quinoline-4-one as a promising 

candidate for APIs with sedative and nootropic properties. 

To achieve the goal, the following tasks were set: 

1. To systematize and analyze the scientific literature on the main 

mathematical and statistical approaches and methods used to predict possible 

pathways of chemical metabolism in the human body. 

2. To perform a computer prediction of possible pathways of 

biotransformation of a promising compound – 2-methyl-3-[(2-methoxy-

anilino)methyl]-1H-quinolin-4-one (laboratory code VAZ_07) using five different 

online resources that are freely available. 

3. Based on the systematization of the obtained results, identify the main 

possible pathways of biotransformation of 2-methyl-3-[(2-methoxyanilino)methyl]-

1H-quinolin-4-one. Summarize the data obtained by in silico methods and identify 

a potential range of metabolites for further in vitro and in vivo studies. 

4. Based on the analysis of coincidences and discrepancies in the results 

obtained using different software products, determine the correlation of the main 



6 

trends in the directions of biotransformation. 

Object of the study. A promising API with sedative and nootropic action 

2-methyl-3-[(2-methoxyanilino)methyl]-1H-quinoline-4-one. 

Subject of the study. Probable metabolic pathways of 2-methyl-3-[(2-

methoxyanilino)methyl]-1H-quinoline-4-one in the human body. 

Methods of the study: 

1. Analysis and systematization of scientific and patent literature. 

2. In silico prediction of possible pathways of xenobiotics biotransformation in 

the human body. 

3. Methods of extrapolation and visualization of the results of prediction of 

possible metabolites. 

The practical value of the results. The results of the study expand the 

knowledge of possible metabolic pathways of 2-methyl-3-[(2-methoxy-

anilino)methyl]-1H-quinolin-4-one, a substance that is a promising API with 

sedative and nootropic effects. The results obtained can significantly expand and 

deepen the understanding of both pharmacodynamic and pharmacokinetic features 

of the promising API candidate, subject to further in-depth pharmacological research 

and introduction of the compound into medical practice. 

Elements of scientific research. For the first time, a computer prediction of 

possible pathways of biotransformation of 2-methyl-3-[(2-methoxyanilino)methyl]-

1H-quinolin-4-one as a promising candidate for APIs with sedative and nootropic 

properties. 

Structure and scope of the qualification work. The qualification work 

consists of an introduction, 3 chapters, general conclusions, and a list of references 

(80 items). The total volume of the work is 51 pages. The work contains 1 scheme, 

3 tables and 16 figures.  
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CHAPTER 1. MODERN APPROACHES TO COMPUTER PREDICTION 

OF MEDICINAL SUBSTANCE METABOLISM IN THE HUMAN BODY 

(Literature review) 

 

1.1 Role of computational metabolism prediction methods in drug 

development 

 

As our understanding of the metabolic reactions that determine the fate of 

drugs has recently deepened significantly, drug metabolism has attracted increasing 

attention as a critical factor in drug discovery [1, 2]. The fate of substances such as 

drugs and xenobiotics introduced into our bodies is largely governed by three phases 

of drug metabolism: phase I, the introduction of a reactive group by oxidation, 

reduction, or hydrolysis, among others; phase II, conjugation with various 

fragments; and phase III, the elimination of xenobiotics and metabolites from liver 

and intestinal cells. These transformation processes can turn compounds into 

inactive, active, or toxic metabolites. Not surprisingly, since it is responsible for the 

clearance of ∼70% of clinical drugs, metabolism is intensively studied as part of 

drug development efforts [3]. 

Natural compounds have recently attracted considerable research attention 

due to their inherent advantages and high potential as drug candidates [4]. Moreover, 

the structural similarity of some natural compounds to metabolites found in the 

human body makes metabolism a critical factor in determining the efficacy of natural 

medicines [5]. For example, historical opioid drug candidates are metabolized into 

more potent metabolites, such as (dihydro)codeine, which in turn is metabolized into 

(dihydro)morphine [6]. Given the large number of endogenous enzymatic reactions 

that influence drug modification through (de)activation and (de)toxification, 

determining how a drug is metabolized is an important step in drug discovery. 

In recent decades, numerous experimental technologies have been used to 

study drug metabolism and fate [7, 8]. The traditional method of drug discovery - 

target-to-target, target-to-ligand, and ligand optimization – is expensive, costing 
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more than $200 million for an average drug, and time-consuming, with a typical 

discovery period of 4-5 years [9]. In addition, due to the inability to accurately 

reproduce biological environments in vivo, such methods are relatively imprecise 

and are still considered low throughput, given the scale of combinatorial structural 

variations in chemical compounds. 

As part of drug discovery efforts, numerous advances have been made in 

predicting drug metabolism using in silico approaches, and various aspects of these 

advances have been reviewed [10-14]. These include tools for predicting drug 

metabolism based on the interaction of drugs with cytochrome P450 (CYP450) 

enzymes and their metabolic endpoints [12, 14], tools for predicting ADMET 

(absorption, distribution, metabolism, excretion, and toxicity) properties of drugs 

and their associated solubility permeability, and bioavailability [10], as well as 

approaches to predicting the inductance of drug-metabolizing enzymes and 

transporters that affect the concentration of drugs in blood plasma, which can cause 

undesirable or prolonged effects or side effects [13]. 

Because of these observations, in silico approaches are increasingly being 

used to predict the metabolic transformation of drugs [15] and as such are considered 

the best strategy to "fail early and fail cheap", which reduces costs, saves time, and 

thus reduces churn rates in the later stages of drug discovery. 

 

1.2 In silico approaches to predicting molecular biotransformation 

 

1.2.1 Prediction based on quantitative structure-activity relationships and 

machine learning approaches 

The concept of quantitative structure-activity relationship (QSAR), developed 

in the early 1960s by Hansch/Fujita [16] and Free/Wilson [17] and widely used in 

drug discovery, suggests that molecules with similar structures potentially exhibit 

similar chemical and biological activities [18]. The initial concept of the structure-

activity relationship dates back to 1868, when Cram-Brown and Fraser introduced 

the idea of correlating the chemical composition of a compound with its 
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physiological properties in biological systems [19]. QSAR-based models are widely 

used at the optimization stage of drug development to assess various drug properties 

(including toxicity) and, as a result, reduce the number of promising lead compounds 

identified through screening, which ultimately minimizes time, costs and labor. The 

European Commission's REACH (Registration, Evaluation and Authorization of 

Chemicals) regulation [20] allows the use of various approaches, such as QSAR, 

provided that the results are proven to be highly reliable [21]. 

The QSAR approach uses experimental datasets that include the biological 

activity of chemical compounds, their chemical and physical characteristics 

represented as molecular descriptors [22], and statistical methods to correlate these 

molecular descriptors with biological activity [23] (Fig. 1.1). 

 

Figure 1.1 QSAR approach to in silico prediction 
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Table 1.1 

List of the main online systems for calculating molecular descriptors 

 

a http://research.chem.psu.edu/pcjgroup/adapt.html 
b http://www.simulations-plus.com/software/admet-property-prediction-qsar/ 
c https://www.chemaxon.com/products/ 
d http://www.codessa-pro.com/ 
e https://www.mn-am.com/products/corinasymphony 
f https://chm.kode-solutions.net/products_dragon.php 
g http://www.vcclab.org/lab/edragon/ 
h http://www.chemcomp.com/MOE-Cheminformatics_and_QSAR.htm 
i http://www.edusoft-lc.com/molconn/ 
j http://molgen.de/download.html 
k http://www.yapcwsoft.com/dd/padeldescriptor/ 
l https://www.niss.org/research/software/powermv 
m Commercial affiliates available 
n https://preadmet.bmdrc.kr/ 
o http://openbabel.org 
p https://www.schrodinger.com/qikprop 
q https://www.acdlabs.com/products/percepta/ 
r http://openmopac.net/ 
s https://www.epa.gov/tsca-screening-tools/download-epi-suitetm-estimation-program-interface-v411  

http://research.chem.psu.edu/pcjgroup/adapt.html
http://www.simulations-plus.com/software/admet-property-prediction-qsar/
https://www.chemaxon.com/products/
http://www.codessa-pro.com/
https://www.mn-am.com/products/corinasymphony
https://chm.kode-solutions.net/products_dragon.php
http://www.vcclab.org/lab/edragon/
http://www.chemcomp.com/MOE-Cheminformatics_and_QSAR.htm
http://www.edusoft-lc.com/molconn/
http://molgen.de/download.html
http://www.yapcwsoft.com/dd/padeldescriptor/
https://www.niss.org/research/software/powermv
https://preadmet.bmdrc.kr/
http://openbabel.org/
https://www.schrodinger.com/qikprop
https://www.acdlabs.com/products/percepta/
http://openmopac.net/
https://www.epa.gov/tsca-screening-tools/download-epi-suitetm-estimation-program-interface-v411
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Molecular descriptors are arithmetic values that reflect the physicochemical 

properties of compounds and can be classified as 1D, 2D, or 3D descriptors, 

depending on the amount/type of information provided. The most common types of 

descriptors used in QSAR are constitutional, electronic, topological, and geometric 

descriptors, which include molecular weight, total number of atoms, total number of 

carbon atoms, atomic lattice, total number of bonds, and Van der Waals area, among 

others. A wide range of software and web-based tools are available to calculate 

molecular descriptors, as shown in Table 1.1; there are also various QSAR systems 

with their own integrated descriptor generators, including CASE Ultra 

(http://www.multicase.com/case-ultra) and Leadscope 

(http://www.leadscope.com/). 

Typically, QSARs that predict the metabolic transformation of endogenous or 

exogenous compounds are built for hepatic enzymes of the CYP450 family (which 

metabolize most drugs into toxic chemical compounds [24]) and are known for their 

reliability in predicting toxicity; as such, they provide valuable information for large-

scale virtual drug efficacy screening. 

Table 1.2 lists common QSAR-based models built to predict drug metabolism 

reactions. Several of the other models listed in the table (e.g., IDsite, SMARTcyp) 

can also predict the site at which a metabolic transformation occurs in a chemical 

compound. In addition, the CQSAR database, created in 2003 and available to users 

[25], contains more than 18,000 QSAR equations and associated biophysical data. 

The QSAR Data Bank, another repository that archives in silico descriptive 

and predictive models such as QSARs, allows the research community to share and 

present their QSAR data [26]. QSARs have been used since the early era of drug 

discovery, but their application has been limited to small linear datasets. However, 

advanced methods based on direct scoring and/or machine learning algorithms that 

can model complex nonlinear data sets have been applied recently [27]. 
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Table 1.2 

List of the main online systems for predicting drug metabolism 

 

a http://www.fqs.pl/en/chemistry/products/admeworks-

predictor 

b 2D and 3A4 

c http://www.simulations-plus.com/software/admet-property-

prediction-qsar/metabolism/ 

d 1A2, 2A6, 2B6, 2C8, 2C19, 2C9, 2D6, 2E1, and 3A4 

e http://lmmd.ecust.edu.cn:8000/ 

f 1A1, 1A2, 2A5, 2C9, etc. 

g https://preadmet.bmdrc.kr/ 

h 2C9, 2C19, 2D6, and 3A4 

i https://smartcyp.sund.ku.dk/ 

j 3A4 isoform 

k http://www.way2drug.com/SOMP/ 

l 1A2, 2C9, 2C19, 2D6 and 3A4 

m http://www.moldiscovery.com/software/metasite/ 

n http://reccr.chem.rpi.edu/Software/RS-WebPredictor/ 

o 2C9, 2D6, 3A4, 1A2, 2A6, 2B6, 2C8, 2C19 and 2E1 

p https://www.lhasalimited.org/products/meteor-

nexus.htm 

q https://www.acdlabs.com/products/percepta/ 

r http://www.compudrug.com/metabolexpert 

s http://www.multicase.com/meta-pc 

t https://sygma.readthedocs.io 

u http://oasis-lmc.org/products/software/times.aspx 

v http://oasis-lmc.org/products/software/metapath.aspx 

w https://pubs.acs.org/doi/abs/10.1021/ct200462q 

x https://docs.chemaxon.com/display/docs/Metabolizer 

y https://portal.genego.com/ 

http://www.fqs.pl/en/chemistry/products/admeworks-predictor
http://www.fqs.pl/en/chemistry/products/admeworks-predictor
http://www.simulations-plus.com/software/admet-property-prediction-qsar/metabolism/
http://www.simulations-plus.com/software/admet-property-prediction-qsar/metabolism/
http://lmmd.ecust.edu.cn:8000/
https://preadmet.bmdrc.kr/
https://smartcyp.sund.ku.dk/
http://www.moldiscovery.com/software/metasite/
http://reccr.chem.rpi.edu/Software/RS-WebPredictor/
https://www.lhasalimited.org/products/meteor-nexus.htm
https://www.lhasalimited.org/products/meteor-nexus.htm
https://www.acdlabs.com/products/percepta/
http://www.compudrug.com/metabolexpert
http://www.multicase.com/meta-pc
https://sygma.readthedocs.io/
http://oasis-lmc.org/products/software/times.aspx
http://oasis-lmc.org/products/software/metapath.aspx
https://pubs.acs.org/doi/abs/10.1021/ct200462q
https://docs.chemaxon.com/display/docs/Metabolizer
https://portal.genego.com/
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The rapid progress in the development of new machine learning methods in 

computer science has inspired the development of thousands of QSAR models for 

accurate drug metabolism prediction based on methods other than linear and 

multiple linear regression [20, 28]. Machine learning, defined as a computational 

method that is trained on a set of test data to build a model for classifying unknown 

data [29], was primarily used to develop QSAR models [30]. The application of 

machine learning approaches in modern drug discovery has accelerated the process 

of scanning and screening out ineffective compounds, achieving a significant 

reduction in time and cost compared to experimental screening methods [31]. 

Machine learning is better suited for extracting non-parametric and nonlinear 

relationships from data sets, which allows for the development of in silico models 

with better predictive performance [32]. 

Several machine learning methods (e.g., neural network, decision tree, support 

vector machine, k-nearest neighbor) have been successfully used to build more 

accurate QSAR models [33], which take a set of descriptors from a large data set as 

input and create a classification model that predicts the biological activity of the 

requested compound as output. 

Currently, machine learning is widely used in the field of computer-assisted 

drug discovery, which allows predicting the interaction between a ligand and a target 

protein, and thus facilitates the development of new drugs [34]. It also aims to predict 

the ADMET properties of drugs, which ultimately facilitates the development of safe 

and promising agents [35]. Drug metabolism is divided into several phases, each of 

which has numerous enzymes that play a role in drug metabolism, so a large number 

of machine-learning models have been built to classify drug fate based on whether 

the drug will be metabolized by certain enzymes or not [35]. 

Recently, increased attention has been paid to predicting drug toxicity using 

other machine learning methods, such as neural networks and deep learning [36], 

which involve the use of powerful multilayer interconnected neural networks 

consisting of processing units, referred to as nodes [37]. Examples of architectures 

used to predict biological activity include convolutional, autoencoder, and recurrent 
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neural networks [38]. The rapid increase in pharmaceutical data and computing 

power has inspired the application of neural networks and deep learning in a variety 

of fields, including bioinformatics [39], chemical informatics [40], structure 

prediction [41], and drug discovery [42]. 

The emergence of computer-based prediction is an important turning point in 

the history of drug discovery, as a number of machine learning-based models are 

now available for predicting drug toxicity [43]. However, their application is still 

limited by such drawbacks as the tendency to overfit data and the difficulty in 

choosing the appropriate algorithm and descriptors for the problem from among the 

available ones [44]. An overfitted model occurs when the model is too complex or 

the number of features/descriptors is too large compared to the size of the data set. 

These problems result in a biased model that performs well on the training dataset 

used to build the model but is unable to accurately predict using external datasets 

[45]. 

 

1.2.2 Structural computing approaches 

Identification of the structural properties of a protein provides insight into its 

biological activity and allows the development of effective ligands for its binding. 

Often, metabolic reactions occur at the site where the ligand binds to the target 

protein. This site tells us a lot about the metabolic fate of the drug, and thus whether 

the drug will be therapeutically active, inactive, or toxic. It also often provides 

information that helps to optimize lead compounds. 

To date, structural approaches are among the most successful and recognized 

methodologies used in various fields of pharmaceutical research for drug 

development [46]. These modern methods include techniques such as computational 

docking and molecular dynamics, which are intensively used to study drug 

metabolism by identifying the metabolic site [47] and molecular interactions, 

information that contributes significantly to the drug discovery process [48]. 

The docking method considers the interaction between a small molecule and 

an active site on a target protein and predicts the affinity of their binding interactions 
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based on their docking orientation and the forces interacting between them. Protein-

ligand interactions are modeled using powerful computational tools, such as docking 

algorithms [49] implemented in AutoDock Vina, GOLD, and DOCK software 

packages, which predict the most favorable response. The construction of these 

models is based on the assumption that structural information is closely related to 

the metabolic fate of the drug [50]. The docking approach is widely used for the 

rapid identification of promising lead compounds from large compound libraries. 

Ligand-protein interactions often require structural changes to achieve better 

interaction, and can be modeled using molecular dynamics simulations. Thus, 

molecular dynamics simulations are often used in conjunction with docking 

algorithms to further refine docking complexes by taking into account other 

parameters such as solvent effects, which allows for more accurate drug candidates; 

they are also used to predict the site of metabolism. Table 1.3 summarizes some of 

the most common tools used to model protein-ligand docking. 

Despite their many advantages, structural approaches require high 

computational power to model structural flexibility. The processes of calculating the 

binding energy and estimating the docking conformation require different methods 

that can take from several seconds to several days, making these calculations 

computationally expensive. In addition, the target protein and its ligand may undergo 

structural changes to adapt their structures to the appropriate conformational state 

[51]; thus, obtaining an accurate model replica is still a challenging task. However, 

additional methods have been used to improve the accuracy of modeling, such as the 

use of rotamer libraries [52] or soft docking simulations [53]. 

Rotamer libraries are used to predict the most suitable side-chain 

conformations and remove unfavorable conformations, leading to the selection of 

low-energy side-chain conformations and thus increasing modeling accuracy and 

reducing modeling time. Soft docking can be performed using soft scoring functions 

to make minor changes to the conformation of protein receptors, an approach that is 

known to be computationally efficient [54]. 

  



16 

Table 1.3 

List of basic tools for modeling protein-ligand docking 

 

a http://vina.scripps.edu/ 

b https://www.worldcommunitygrid.org/ 

c http://voronoi.hanyang.ac.kr/software.htm 

d http://zhanglab.ccmb.med.umich.edu/BSP-

SLIM/ 

e http://dock.compbio.ucsf.edu/DOCK_6/ 

index.htm 

f http://www.dockingserver.com/web 

g Commercial premium licenses 

h http://biophys.umontreal.ca/nrg/NRG/Flex 

AID.html 

i http://sw16.im.med.umich.edu/databases 

/pdbbind/ index.jsp 

j https://www.schrodinger.com/glide 

k https://www.ccdc.cam.ac.uk/solutions/csd-

discovery/components/gold/ 

l http://idtarget.rcas.sinica.edu.tw/ 

m https://www.chemcomp.com/MOE-

Structure_Based_Design.htm 

n https://sourceforge.net/projects/mols2-0/ 

o http://www.scfbio-iitd.res.in/dock/pardock.jsp 

p http://rdock.sourceforge.net/ 

q http://www.swissdock.ch/ 

r http://www.biograf.ch/index.php?id= 

projects&subid=virtualtoxlab 

 

http://vina.scripps.edu/
https://www.worldcommunitygrid.org/
http://voronoi.hanyang.ac.kr/software.htm
http://zhanglab.ccmb.med.umich.edu/BSP-SLIM/
http://zhanglab.ccmb.med.umich.edu/BSP-SLIM/
http://dock.compbio.ucsf.edu/DOCK_6/%20index.htm
http://dock.compbio.ucsf.edu/DOCK_6/%20index.htm
http://www.dockingserver.com/web
http://biophys.umontreal.ca/nrg/NRG/Flex%20AID.html
http://biophys.umontreal.ca/nrg/NRG/Flex%20AID.html
http://sw16.im.med.umich.edu/databases%20/pdbbind/%20index.jsp
http://sw16.im.med.umich.edu/databases%20/pdbbind/%20index.jsp
https://www.schrodinger.com/glide
https://www.ccdc.cam.ac.uk/solutions/csd-discovery/components/gold/
https://www.ccdc.cam.ac.uk/solutions/csd-discovery/components/gold/
http://idtarget.rcas.sinica.edu.tw/
https://www.chemcomp.com/MOE-Structure_Based_Design.htm
https://www.chemcomp.com/MOE-Structure_Based_Design.htm
https://sourceforge.net/projects/mols2-0/
http://www.scfbio-iitd.res.in/dock/pardock.jsp
http://rdock.sourceforge.net/
http://www.swissdock.ch/
http://www.biograf.ch/index.php?id=%20projects&subid=virtualtoxlab
http://www.biograf.ch/index.php?id=%20projects&subid=virtualtoxlab
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Docking approaches have been thoroughly applied to predict drug toxicity in 

silico, allowing to identify the binding of lead compounds to adverse proteins and 

predict undesirable side effects and consequences [55]. For example, using docking 

simulations, Ji et al. searched for potential protein partners for binding 11 

antiretroviral drugs among 147 known proteins associated with adverse reactions 

deposited in the DART (Drug Adverse Reaction Target) database to predict adverse 

drug effects. They confirmed that the predicted proteins associated with adverse drug 

reactions that caused side/toxic effects corresponded to the reported adverse 

reactions that occurred as a result of drug-target interaction [56]. In 2011, the same 

approach was used to predict the toxicity of melamine and its main derivative, 

cyanuric acid. This analysis identified potential target proteins associated with 

toxicity and provided a detailed understanding of the toxicity mechanism. In 

particular, in addition to nephrotoxicity, melamine was also predicted to have a toxic 

effect on the lungs [57]. Thus, a computational docking strategy can significantly 

facilitate the prediction of drug toxicity. 

Despite the significant progress in drug discovery achieved through structure-

based approaches, the widespread use of this strategy is hampered by numerous 

limitations, not the least of which is the problem of prodrugs and their metabolic 

conversion to another active compound(s) [58]. For example, reliable prediction of 

the metabolic fate of a particular drug requires high-resolution experimental 

structural data for all target proteins (e.g., enzymes). In addition, the analysis of 

protein-ligand complexes (and hence accurate reaction prediction) is hampered by 

the structural flexibility of proteins. 

 

1.3 Application of in silico tools for predicting drug metabolic pathways 

 

1.3.1 Prediction of the transformation of drugs into toxic metabolites 

The metabolism of xenobiotics, such as drugs and other foreign substances, 

involves certain important enzymatic reactions, in particular those mediated by 

CYP450 enzymes expressed in the liver and small intestine. According to the 
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literature, ∼90% of drugs can be efficiently metabolized by six CYP450 enzymes 

[59], whose activity can vary under the influence of factors such as genetic 

polymorphisms, cytokine regulation, disease state, gender, age, and hormones [60]. 

Another example is the membrane-bound P-glycoprotein (encoded by the multidrug 

resistance gene-1), which is expressed in various tissues, including intestinal 

epithelium, liver cells, and cells that form the blood-brain barrier. These tissues are 

known to act as biological barriers that limit the entry of various substances into 

cells, and thus affect the distribution of drugs for further metabolism [61]. 

As indicated in Tables 1.1 and 1.2, there are a large number of computer 

models for predicting enzymatic reactions, reflecting the strong influence of such 

reactions on the properties of ADMETs, which lead to a decrease or increase in the 

pharmaceutical effect of the drug [62]. 

 

1.3.2 Prediction of enzymatic reactions of drugs and enzymes 

Endogenous enzymes in the human body can mediate the metabolic 

transformation of administered drugs into inactive, active, or toxic chemical 

compounds, which emphasizes the practical importance of predicting potential 

chemical modifications of drugs. Drug metabolism involves enzyme-catalyzed 

reactions; thus, a number of attempts have been made recently to predict enzyme-

mediated reactions. An example of this is the reported prediction of hydrolysis and 

redox reactions. In this study, a machine learning-based model was built to predict 

classes/subclasses of hydrolysis reactions (EC 3.b.c.d, b - 1, 2, and 5) and redox 

reactions (EC 1.b.c.d, b - 1, 2, 3, 4, 5, 8, 13, and 14) [63], which allows predicting 

the metabolic transformations of a molecule. 

To predict the enzymatic reactions involved in metabolic pathways, one study 

used a new approach to build a substrate-enzyme-product interaction network based 

on the k-nearest neighbor method to provide information related to toxicity in 

metabolic pathways. Substrate, enzyme, and products were encoded by molecular 

descriptors and physicochemical properties, and the k-nearest neighbor algorithm 

was used to build a predictive model. The substrate-enzyme-product interaction 
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networks were represented as the main factors, and the optimal features were 

selected using the maximum relevance, minimum redundancy and incremental 

feature selection (mRMR-IFS) method. Of the 290 features, 160 were selected and 

grouped into 10 different categories, including amino acid composition, predicted 

secondary structure, hydrophobicity, hydrophobicity and amino acid composition, 

predicted secondary structure, hydrophobicity, and polarity, among others [64]. 

In another study, a machine learning approach was recently used to 

computationally predict the potential reactions of 1449 enzymes (including CYP450 

enzymes) deposited in the BRENDA (Braunschweig Enzyme Database) [65] and 

HMDB (Human Metabolome Database) [66] databases. In particular, it was 

assumed that if a known molecule interacts with a certain enzyme, then the query 

molecule should also interact with this enzyme if the physicochemical descriptors of 

the query molecule are similar to those of the known molecule. Interestingly, this 

model has shown the ability to predict enzymatic conversion by CYP450 enzymes 

and the concomitant formation of toxic metabolites, and therefore it was concluded 

that it is useful for predicting drug metabolism in terms of biological activity and 

toxicity [67]. Thus, the above methods of predicting potential enzymatic reactions 

have revolutionized in silico approaches and made a significant contribution to drug 

screening and identification of potential new drugs. 

 

1.3.3 Prediction of drug molecule-target interactions based on the concept of 

pharmacological space 

Based on the theory that proteins that mediate similar reactions are likely to 

have substrate similarity, Yamanishi et al. [68] proposed a QSAR-based model for 

predicting unknown drug-target interactions by introducing the concept of 

pharmacological space, which integrates chemical structure and information about 

the genomic profile of a protein. Based on the assumption that compounds with high 

structural similarity are more likely to interact with similar target proteins, chemical 

and genomic similarity was calculated and combined into a pharmacological space. 

The prediction model was built using three datasets: a dataset of drug-target 
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interactions obtained from various databases, a chemical dataset consisting of the 

structures of chemical compounds expressed as a similarity matrix between two 

compounds (chemical space), and a genomic dataset consisting of the amino acid 

sequences of target proteins expressed as a similarity matrix (genomic space). The 

chemical and genomic protein sequence datasets were combined into a 

pharmacological space and calculated using a bipartite graph learning model. The 

performance of the model was subsequently evaluated based on drug-target 

interaction data, and it was shown that the developed model predicts both enzyme-

compound and protein interactions. enzyme-compound activity and protein 

interactions with other factors such as ion channels, G-protein-coupled receptors, 

and nuclear receptors. Thus, the model allowed us to reliably predict the interaction 

of a set of protein-compound pairs. 

 

1.4. Problems associated with building predictive models 

The inconsistency of available experimental data used to build in silico 

models is a major problem [69]. Predictive models rely heavily on experimental data 

to build the model; thus, high variability in experimental assays caused by biological 

variations and technical errors can lead to erroneous data and thus can introduce 

inaccuracy in predictive models. The inaccuracy of in silico models can also result 

from different experimental conditions for multiple resources collected, unbalanced 

datasets, and molecular descriptor values that differ from instrument to instrument 

[70]. The reliability of experimental data is confirmed if the results are consistent 

and accurate within a standardized experimental protocol over time. Therefore, in 

addition to considering the validity of in silico models, the quality of experimental 

data should also be considered. There have been several attempts to take into account 

the reliability of experimental data and their degree of uncertainty, efforts that often 

improve the accuracy of predictions [71]. This highlights the fact that low prediction 

accuracy may not only be the result of the in silico nature of the prediction tool, but 

may also reflect the nature of biological experiments. Comprehensive databases such 

as Drugbank, HMDB, and others such as MetaDrug and MetaCore are gradually 
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becoming more robust through human curation, improved data mining algorithms, 

and/or the addition of new experimentally validated data, which increases the 

reliability of the datasets used by in silico models and thereby improves the accuracy 

of the results. In silico methods have become a major innovation in attempts to 

predict the fate of drugs, but building reliable predictive models remains a challenge. 

Therefore, predictive models are tested and their accuracy, validity, and reliability 

are confirmed using external validation datasets to determine whether the model is 

acceptable for a particular purpose. For example, three web servers, SOMP, 

SMARTcyp, and RSWebPredictor, which are used to predict metabolic site, were 

compared for their prediction accuracy. Of these, the SOMP server was shown to have 

a higher invariant prediction accuracy (similar to AUC) than the others, with a score 

of 0.9, and thus is considered an adequate tool for drug metabolism prediction [72]. 

Thus, due to its central importance, metabolism in biological systems is 

intensively studied, especially in the field of drug development. The high influence 

of drug metabolism on drug efficacy and fate in biological systems has led to the 

emergence of numerous in silico approaches and tools for predicting metabolic 

reactions in recent decades. However, the limitations of these approaches cannot be 

ignored. In particular, the fact that these methods are heavily dependent on 

experimental data is a major concern, as inconsistent and erroneous data can lead to 

inaccurate prediction models. Although the prediction of metabolic reactions is an 

extremely challenging field, it has greatly facilitated the advancement of drug 

discovery, continuing to show rapid improvement with the development of 

computational methods and increased computing power. 

 

Conclusions to the Chapter 1 

1. The scientific literature on the main in silico approaches and methods 

used to predict possible pathways of chemical metabolism in the human body was 

systematized and analyzed. 

2. The analysis confirms the prospects of using the software to predict 

possible metabolites of a potential drug at the early stages of its research.  
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CHAPTER 2. MATERIALS AND METHODS OF THE STUDY 

 

The object of the study is 2-methyl-3-[(2-methoxyanilino)methyl]-1H-

quinolin-4-one (laboratory code VAZ_07), synthesized by Associate Professor of 

the Department of Medicinal Chemistry, Doctor of Pharmaceutical Sciences 

Vadym Zubkov (Fig. 2.1). 

 

Fig. 2.1 Structural formula of 2-methyl-3-[(2-methoxyanilino)methyl]-1H-

quinoline-4-one (VAZ_07) 

2.1 Synthesis of 2-methyl-3-[(2-methoxyanilino)methyl]-1H-quinoline-4-

one 

As a starting compound for the synthesis of 2-methyl-3-[(2-

methoxyanilino)methyl]-1H-quinoline-4-one, 2-methylquinolin-4-one (starting 

compound) was used, which was aminomethylated under Mannich reaction 

conditions [73], and the resulting Mannich base (3-dimethylaminomethyl-2-

methylquinolin-4-one hydrochloride) upon reamination with ortho-anisidine 

(2-methoxyaniline) forms 2-methyl-3-[(2-methoxyanilino)methyl]-1H-quinoline-4-

one (Scheme 2.1). 

It is known that the Mannich reaction is unambiguously carried out only when 

secondary amines are used, whereas ammonia and primary amines can react with 

the replacement of all hydrogen atoms adjacent to the nitrogen. It has been confirmed 

that the interaction of 2-methylquinolin-4-one with primary aliphatic amines, 

anilines, and diethylamine under classical Mannich reaction conditions leads to the 

formation of mostly by-products that are insoluble in most organic solvents. It is also 

known that Mannich bases can be used as alkylating agents in reactions with amines 

and methylenated compounds. Such alkylation is especially easy if the Mannich base 
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is formed by an amine, which can be easily cleaved off, for example, by 

dimethylamine. In this regard, the synthesis of 3-dimethylaminomethyl-2-methyl-

1H-quinolin-4-one was carried out, as well as the subsequent synthesis of 

3-arylamino derivatives of 2-methylquinolin-4-one on its basis. 

Scheme 2.1 

toluene, boiling

HCOH, HN(CH3)2
. HCl

. HCl

p-TosOH

benzene, boiling

polyphosphoric
acid

+140-160оС

C2H5OH, boiling

, NaOH

  

The hydrochloride of 3-dimethylaminomethyl-2-methyl-1H-quinoline-4-one 

was obtained in two ways: by boiling 2-methylquinoline-4-one with formaldehyde 

and dimethylamine hydrochloride in ethanol (method I), and by aminomethylation 

of 2-methylquinoline-4-one with N,N-dimethylimmonium chloride (method II). The 

use of imonium salts allows for an unambiguous synthesis, increases the yield of 

target products compared to the conventional Mannich reaction, and simplifies the 

reaction itself [44]. Thus, method II is more suitable for the synthesis of 

hydrochloride. The resulting salt, when boiled in toluene in the presence of 

powdered NaOH, readily undergoes a transamination reaction with primary aliphatic 

amines, anilines, and diethylamines to form the target 3-N-R-aminomethyl 
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quinolones. The end of the reaction is determined by the end of the release of 

dimethylamine from the reaction medium. 

The key intermediate can be obtained by the interaction of the free base with 

primary amines and diethylamine in boiling toluene (method B). However, the total 

yield of the final products by this method in terms of hydrochloride was significantly 

lower than the yields of syntheses using hydrochloride itself. This is apparently due 

to the good solubility of 3-dimethylaminomethyl-2-methyl-1H-quinolin-4-one in 

water and, accordingly, to the loss of the compound at the stage of obtaining a free 

base [73]. 

The structure and identity of 2-methyl-3-[(2-methoxyanilino)methyl]-1H-

quinoline-4-one were confirmed by 1H NMR spectroscopy and thin-layer 

chromatography. 

 

2.2 Pharmacological properties of 2-methyl-3-[(2-methoxy-

anilino)methyl]-1H-quinoline-4-one 

The investigated molecule became a promising object for pharmacological 

study based on the results of a comprehensive screening study of its psycho- and 

neurotropic properties conducted by Illya Podolsky, Associate Professor of the 

Department of Medicinal Chemistry, Doctor of Pharmaceutical Sciences. 

The screening was performed on white nonlinear mice at doses of 10 and 

100 mg/kg using open field, elevated plus maze, rotarod test, Porsolt’s 

immobilization test, and conditional passive avoidance reaction against 

scopolamine-induced amnesia. At the end of the screening, the effect on the life 

expectancy of mice in a model of acute normobaric hypoxia with hypercapnia was 

studied [74]. 

The results of the VAZ_07 study in the open field test revealed the 

psychotropic indifference of the test compound. In animals injected with 2-methyl-

3-[(2-methoxyanilino)methyl]-1H-quinolin-4-one at a dose of 10 mg/kg, a threefold 

decrease in the number of crossed squares (p<0.01) was observed compared to the 

intact control (Fig. 2.2). There was also a significant decrease in the number of 
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defecations (p<0.05) and, as a result, a twofold decrease in the total sum of all 

activities (p<0.01) (Fig. 2.3). 

 

Fig. 2.2 Effect of VAZ_07 on the number of squares crossed by animals in the 

open field test 

 

Fig. 2.3 Effect of VAZ_07 on the total sum of all animal activities in the open 

field test 
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However, these changes in locomotor activity and emotional reactions were 

not accompanied by impaired research activity. This reflects a certain selectivity of 

sedation, which may be a positive feature of this compound. At a dose of 100 mg/kg, 

the effect on behavioral reactions was similar, but less pronounced. 

According to the results of the conditioned passive avoidance reaction test 

against scopolamine-induced amnesia, VAZ_07 only at a dose of 10 mg/kg 

significantly showed an anti-amnestic effect, and the anti-amnestic activity was 

87.9 % (p<0.05). At a dose of 100 mg/kg, the test substance also had a protective 

effect against M-cholinergic blocker administration at the level of 78.7 %, but the 

difference with the amnesia control group did not reach a significant level (Fig. 2.4). 

 

Fig. 2.4 Results of the study of VAZ_07 in the test of passive avoidance 

conditioned response against scopolamine-induced amnesia 

 

The anxiolytic properties of VAZ_07 were studied in the elevated plus maze 

test (Fig. 2.4). However, no significant differences in the behavior of animals were 

found in terms of indicators of anxiety. It should be noted that a significant decrease 

in the number of transitions between the maze arms in animals administered 

VAZ_07 at a dose of 10 mg/kg (Fig. 2.5) is more in favor of the sedative properties, 

which were also found in the open field test. 
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Fig. 2.5 Results of the VAZ_07 study in the elevated plus maze test 

 

Animals treated with a dose of 10 mg/kg VAZ_07 made more than 4-times 

(p<0.05) fewer transitions between maze compartments compared to mice in the 

intact control group, which, when compared with the almost unchanged latency time 

of the first pass and the total time spent in the illuminated arms, indicates that the 

compound under study has no effect on animal anxiety. 

Thus, the results of a comprehensive screening study [74] outlined the 

prospects for an in-depth study of VAZ_07 at a dose of 10 mg/kg as a promising 

API with sedative and nootropic properties. 

 

2.3 Online computerized metabolism prediction systems used 

Xenosite (https://xenosite.org) 

XenoSite is a neural network-based CYP SOM prediction model that 

improves on RSP in a number of ways [75]. XenoSite uses the sets of substrates and 

descriptors generated by RSP as a starting point and makes the following 

improvements: 
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1. New molecular-level descriptors have been developed that allow machine 

learning methods to internally determine which atomic descriptors are most relevant 

for a particular substrate in prediction. 

2. Neural networks are used to build the models, rather than the SVM 

technology used by RSP. One of the advantages of neural networks is that they have 

a much faster training model execution time than SVMs. The second advantage is 

that their output oxidation probability coefficient has a quantitative expression in a 

numerical format that can be interpreted as a probability, unlike RSP SVMs, which 

only provide a rank ordering of SOMs contained in the same substrate. The SOM 

score obtained from the neural network is significantly correlated with the 

probability of SOM oxidation, while the SOM score obtained from the RSP rank 

orderings is not. Thus, XenoSite scores serve as a reflection of both the model's 

prediction validity and prediction accuracy. This means that consumers can view 

SOM scores for an entire substrate and make informed decisions about the reliability 

of the prediction [75]. 

Xenosite utilizes a pre-assembled set of 680 CYP substrates distributed across 

nine CYP enzymes: 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4. In 

addition, a human liver microsome (HLM) set is analyzed, considering all 680 

substrates and all observed metabolites, regardless of metabolizing isoform. This 

HLM set does not represent all metabolic functions of liver microsomes, but reflects 

the totality of known CYP metabolism [75]. 

In a molecule, every atom that can be metabolized in a CYP substrate is a 

potential SOM. Each atom is associated with a vector of numbers, with each number 

encoding the chemical properties of that SOM; these codes of chemical information 

are known as descriptors. Machine learning algorithms then analyze these encoded 

SOM descriptors to determine a scoring function that gives experimentally observed 

CYP-mediated SOMs high scores and unobserved SOMs low scores. A combination 

of previously defined descriptors - topological (TOP) and quantum chemical (QC) 

descriptors, SMARTCyp reactivity descriptor (SCR) in addition to a refined subset 

of QC descriptors (SQC), molecular (MOL) descriptors and fingerprint similarity 
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(FP) descriptors - are used. MOL and FP descriptors have recently been used for 

SOM prediction and encode information about molecules as a whole in addition to 

the local atomic environment [75]. 

All models are built using a standard neural network with five hidden nodes, 

calibrated using cross-validation without outliers (LOO) with gradient descent on 

the cross-entropy error. LOO cross-validation in this case means that all SOMs for 

one test substrate are predicted using models calibrated with all SOMs from the rest 

of the substrate set. This process is repeated with each substrate that is considered 

as a test once. The models created by this protocol produce output scores from 0 to 

1, which can be interpreted as probabilities. For each training cycle, three random 

re-runs were performed, selecting the model with the best accuracy to the training 

set before testing. Unique SOM prediction models were built from each of the 10 

sets of SOM substrates represented by the TOP and SCR descriptors in combination 

with various combinations of the QC, SQC, MOL, and FP descriptors. XenoSite's 

optimal models are on average 87 % accurate for all analyzed substrate sets, a 

performance level 3% higher than the previously existing optimal RSP method. This 

performance improvement comes from representing the predicted SOMs with two 

new molecular-level descriptor classes and pruning the descriptor composition of 

the previously developed atomic-level descriptor class to remove noise while 

preserving signal; neither of these improvements is responsible for the full increase 

in prediction accuracy. 

SMARTCyp (https://smartcyp.sund.ku.dk/mol_to_som) 

Most of the previously published methods for predicting CYP metabolism 

require experimental data to create models. Such data are incomplete because they 

always include sites that are "false negatives" (reactive sites for which no 

metabolites are found because a metabolite is found for an even more reactive site) 

and often include compounds with missing metabolites, leading to significant 

"noise" in the training data. 

SMARTCyp does not require three-dimensional structures of the molecule, 

and although it is supported by experimental data, its implementation is not 
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dependent on them [76]. The idea behind SMARTCyp is that the activation energies 

of CYPs reacting with ligand fragments calculated by quantum chemical methods 

are the best possible reference to the reactivity of a fragment. The reference data 

from quantum chemical calculations for substances have a very high signal-to-noise 

ratio, as the data are free of experimental errors or so-called "false negatives". The 

results are very easy to interpret, as the lower the activation energy, the more likely 

the site is to be metabolized. 

Atoms that do not match any pattern are not considered reactive. The 

accessibility descriptor, A, is the coefficient of the SPAN descriptor as defined by 

Sheridan et al. It is defined as the longest bonding distance from a given atom 

divided by the longest bonding distance in the entire molecule. It is a measure of 

how far from the 2D center of the molecule an atom is located and is always a 

number between 0.5 and 1. So, it is not a measure of available surface area, but it 

describes how the atoms at the end of the molecule are likely to get close to the 

reactive heme group in the active center of CYP. Finally, the S score is calculated 

for each atom as S = E-8A, where a lower score indicates a higher probability of 

being a SOM. The constant 8 is chosen so that availability can change the score, 

corresponding to a maximum energy of 4 kJ/mol (which is slightly higher than the 

average standard deviation among the calculated energies using our rules, which is 

3.2 kJ/mol). This allows somewhat less reactive atoms to be scored higher if their 

availability A is significantly higher [76]. 

The development of SMARTS rules is based on a dataset of 475 cytochrome 

P450 substrates from the literature. Procedures for determining activation energies 

within the framework of density functional theory (DFT), energy differences 

between the transition state and the reagent complex have already been described. 

While the original SMARTCyp program is based on Java using the Chemistry 

Development Kit (CDK) library, SMARTCyp 3.0 is based on Python using the 

RDKit library. CDK and RDKit perceive aromaticity in a molecule's structure 

differently, and thus there is a difference in which atoms SMARTS models match, 

for example, due to a different set of atoms. To ensure backward compatibility, the 
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differences in SMARTS rules were identified by CDK and RDKit for all sites for 

the test set of 475 3A4 substrates. Each SMARTS rule with a discrepancy was 

analyzed individually, compared to the corresponding molecule and substructure 

from which it was generated, and corrected as necessary [76]. 

The calculated different sites can be divided into six different types, which 

represent one or more types of P450 reactions. The distribution of activation energies 

varies quite a bit between the different types, with phosphorus desulfurization and 

S-oxidation yielding the lowest energies and N-oxidation and N-dealkylation of 

peptide groups yielding the highest energies. To obtain the activation energies, the 

reaction step with the highest activation energy in the respective reactions is 

calculated. For aliphatic hydroxylation, aldehyde hydroxylation, and dealkylation 

reactions, this is the abstraction of hydrogen from a carbon atom, while for other 

reaction types it is the attack of oxygen on the corresponding atom. 

One of the new features implemented in SMARTCyp 3.0 is the "Similarity" 

function, which compares the similarity of the matched substructure to the full 

molecule fragment for which the DFT calculation was performed based on Morgan 

fingerprints. A score of "1.0" indicates a perfect match, while a score of "0.0" means 

that there is no matching fragment, which means that the atom is either not 

considered reactive or the assigned reactivity is not based on calculated data and 

therefore not as reliable [76]. 

The fact that SMARTCyp performs quite well shows that reactivity is a major 

factor in CYP 3A4 metabolism and emphasizes the importance of using accurate 

methods to generate reactivity rules. SMARTCyp is good at detecting compounds 

with a metabolic position that ranks highest, in part because it is a pure 2D method 

that gives extremely fast predictions. The two main advantages of the method are 

that the creation of the method makes physical sense and the low signal-to-noise 

ratio in the input data. Both of these stem from the fact that the reactivity model is 

calculated based on highly skilled quantum chemical calculations of the activation 

energy for oxidation reactions. Other methods often use a larger number of 

descriptors, which leads to a significant amount of noise in the input data, and the 
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relative influence of descriptors is often difficult to understand. Another advantage 

of the method is that it is easy to implement using any of the available chemical 

programming libraries, free or commercial, and can be integrated into workflows 

used by other software. 

Way2Drug SOMP/RA (http://www.way2drug.com/RA) 

To determine the SOM, machine learning approaches must take into account 

the basic mechanisms of enzyme action. However, such information is not always 

available, and the results of SOM predictions can be properly interpreted to 

understand the structure of reaction products. For example, in many cases, 

researchers prefer to consider the carbon atom of the leaving group adjacent to the 

nitrogen as the SOM for N-dealkylation. This assumption is based on the mechanism 

of abstraction of the hydrogen atom, but does not take into account other possible 

one-electron transfer mechanisms of the N-dealkylation reaction [77]. We consider 

nitrogen as a "reacting atom" in the case of the N-dealkylation reaction. Another 

problem with the uncertainty of detecting the site of the molecule attacked by 

cytochromes P450 is related to the mechanism of aromatic hydroxylation, which can 

be realized by the formation of an epoxy intermediate or "NIH shift". Therefore, the 

direct determination of SOMs to create training sets in machine learning approaches 

is problematic, and the interpretation of the predicted results is ambiguous. 

In the Way2Drug approach, SOMP and RA [77] do not attempt to model or 

simulate the hypothetical process of intermediate formation implemented by P450. 

Only known information about the substrate and metabolite structures of the 

reactions is used to create training sets for predicting the reacting atoms of nine 

classes of reactions. The Way2Drug SOMP and RA approach considers the reaction 

classes of aliphatic and aromatic hydroxylation, N-, S-, and C-oxidation, N- and O-

dealkylation, which, according to the Biovia Metabolite database, cover 

approximately 70 % of all reactions catalyzed by the five major P450 isoenzymes 

(CYP1A2, CYP3A4, CYP2D6, CYP2C9, CYP2C19). In addition, the reactions of 

N- and O-glucuronidation are discussed, which cover almost all reactions catalyzed 

by the UDP-glucuronyltransferase family. 



33 

The use of the term "reactive atom" and its definition as the portion of the 

substrate molecule to which a specific structural fragment is added (or removed) 

allows the identification of metabolite structures based on the prediction of the 

reactive atom. Structural fragments added to reactive atoms include hydroxyl 

(hydroxylation reactions), carbonyl or carboxyl (C oxidation reactions), hydroxyl or 

oxo groups (N- and S-oxidation reactions), and glucuronyl (glucuronidation 

reactions) groups. In the case of dealkylation reactions, the alkyl group is considered 

as a fragment that is removed from the reacting atom represented by an oxygen or 

nitrogen [77]. 

In the Way2Drug SOMP and RA approach, the reacting atoms are 

automatically identified in each substrate structure from selected biotransformations. 

The APGL and python-igraph libraries are used to automatically identify the 

reacting atoms. First, all subisomorphisms between substrate and product are 

detected. Then the algorithm checks whether the graphical difference in the 

structures of the substrate and the reaction product is related to the process under 

study. If so, it looks for atoms with a changed number of neighbors in the isomorphic 

environment. Oxidation reactions are catalyzed by cytochromes P450 and are mainly 

realized by oxidation by heteroatoms (N- and S-oxidation) or hydroxylation of 

carbon (aliphatic or aromatic hydroxylation). The aliphatic hydroxylation reaction 

is understood as the hydroxylation of a carbon atom that is not part of the aromatic 

rings. In the case of C oxidation reactions, the formation of carbonyl or carboxyl 

groups is considered. N- and O-glucuronidation is catalyzed by UDP-

glucuronosyltransferases. 

Biotransformer (http://biotransformer.ca) 

BioTransformer is an open-source software tool and a freely available web 

service for accurate and comprehensive in silico metabolism prediction and 

metabolite identification [78]. 

BioTransformer consists of a metabolism prediction tool (BMPT) and a 

metabolite identification tool (BMIT). BMPT consists of five independent 

prediction modules called "transformers", namely: 
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1) an enzyme-directed transformer; 

2) CYP450 transformer (phase I); 

3) phase II transformer; 

4) transformer of human intestinal microbiota; 

5) microbial environment transformer. 

For metabolite prediction, BioTransformer uses two approaches - a rule-based 

or knowledge-based approach and a machine learning approach. The knowledge-

based system in BioTransformer consists of three main components: (1) a 

biotransformation database (called MetXBioDB) containing detailed annotations of 

experimentally validated metabolic reactions, (2) a reaction knowledge base 

containing general biotransformation rules, preference rules, and other constraints 

for metabolite prediction, and (3) a selection engine that implements both general 

and transformer-specific algorithms for metabolite prediction and selection. BMPT's 

machine learning system uses a set of random forest and ensemble prediction models 

to predict CYP450 substrate selectivity and to filter out phase II molecules. The 

BioTransformer metabolite identification tool relies on BMPT to identify specific 

metabolites using mass spectrometry (MS) data, namely precise mass or chemical 

formula information [78]. 

MetXBioDB is a database consisting of a collection of more than 2000 

experimentally validated biotransformations derived from the literature. It was 

developed to assist in (1) developing biotransformation rules, (2) training and 

validating machine learning metabolism prediction models, and (3) developing 

preference rules. Each biotransformation in MetXBioDB includes a starting reagent 

(structure and identifiers), a reaction product (structure and identifiers), the name or 

type of enzyme catalyzing the biotransformation, a reaction type, and one or more 

citations. For the purposes of this article, a reagent is defined as a small molecule 

that binds to a specific enzyme and undergoes a metabolic transformation catalyzed 

by that enzyme. Biotransformation describes the chemical conversion or molecular 

transformation of a reactant into one or more products by a specific enzyme (or class 

of enzymes) through a specific chemical reaction. Cytochrome P450 enzymes 
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(CYP450s) are responsible for >90% of phase I oxidative reactions and >75% of 

drug metabolism, while UDP-glucuronosyltransferases (UGTs) and 

sulfotransferases (SULTs) are responsible for phase II metabolism of most 

xenobiotics [49]. In the gut microbiota, enzymatic reactions are mostly reductive 

and are carried out by anaerobic bacteria due to the very low oxygen concentration. 

The BioTransformer Reaction Knowledge Base contains chemical reaction 

descriptions and rules encoded in SMARTS and SMIRKS strings that are used by 

the selection engine to predict biotransformation. This knowledge base encodes 

information about five different concepts and contains data representing: (1) 

biosystem, (2) metabolic enzyme, (3) metabolic reaction, (4) metabolic pathway, 

and (5) chemical class. 

The BMPT reasoning system uses rules in the reaction knowledge base to 

select the most likely of all applicable metabolic biotransformations or pathways. In 

general, two types of considerations are used to select and rank predicted 

metabolites: absolute and relative [49]. Absolute considerations focus exclusively 

on the probability of biotransformation and are used to select biotransformations 

with an occurrence rate above a given threshold. 

GLORYx (https://nerdd.zbh.uni-hamburg.de) 

GLORY includes a new set of reaction rules for CYP-mediated metabolism, 

which distinguishes common reaction types from more unusual reactions [79]. 

Importantly, GLORY investigated how SoM prediction can be effectively used in 

the context of metabolite structure prediction. 

The SoM prediction software used in GLORY was FAME 2, a machine 

learning-based SoM prediction program that uses highly randomized tree classifiers 

combined with two-dimensional (2D) circular descriptors to predict SoMs for CYP-

mediated metabolism. Since the development of GLORY, a successor to FAME 2 

has become available. FAME 3 continues to utilize the concept of additional tree 

classifiers and 2D circular descriptors developed in FAME 2 and applies this 

approach to create comprehensive SoM prediction models for both phase 1 and 

phase 2 metabolism. 
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Based on the extended approach developed in GLORY, a new tool called 

GLORYx has been created that combines SoM prediction with a set of reaction rules 

to predict metabolites from both phase 1 and phase 2 metabolism. GLORYx uses 

FAME 3 to perform SoM prediction, the results of which are used to score and rank 

the predicted metabolites. Compared to GLORY, GLORYx requires a larger number 

of reaction rules to cover non-CYP phase 1 metabolic reactions as well as phase 2 

metabolic reactions. GLORYx is freely available via a web server at 

https://nerdd.zbh.uni-hamburg.de/. 

A reference dataset of combined metabolite pairs was compiled from freely 

available metabolism data in the DrugBank (drug group "All") and MetXBioDB 

databases to serve as a basis for method evaluation during GLORYx development. 

For each metabolic reaction in either database, the reactant was considered the 

starting molecule and the product was considered the metabolite. Thus, the reference 

dataset is presented in the format of a map of each parent molecule to its first-

generation metabolites, regardless of whether the parent molecule is itself a 

metabolite of another molecule. 

GLORYx applies the reaction rules to all relevant positions in the molecule, 

which is determined by where each SMIRKS reaction rule matches, if at all. Within 

the program, the main parameters are predicted using FAME 3, and the predicted 

probabilities are used to score and rank the predicted metabolites. The software is 

written in Java and uses CDK version 2.0. GLORYx performs an initial 

preprocessing step on all input molecules to check that the input molecule can be 

successfully analyzed by the CDK, does not have multiple components, and does 

not contain element types other than C, N, S, O, H, F, Cl, Br, I, P, B, and Si (allowed 

FAME 3 element types). If any of these checks fail, no predictions are made for the 

input molecule [79]. 

SoM prediction in GLORYx is performed using FAME 3. FAME 3 is trained 

on SoM data from the MetaQSAR database and offers three SoM prediction models: 

1) model P1 predicts SoMs corresponding to phase 1 metabolic reactions; 

2) the P2 model predicts SoMs corresponding to phase 2 metabolic reactions; 
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3) the P1 + P2 model predicts SoMs corresponding to both phases of 

metabolism. 

The FAME 3 code includes preprocessing of the input molecules, including 

nitro group standardization, aromaticity detection, and automatic hydrogen addition 

if the hydrogen of the input molecule is not explicitly specified. Since the SoM 

prediction step occurs before the application of reaction rules within the GLORYx 

program, the standardization of the molecules described here remains in place for 

the next transformation step. 

The reaction rules are applied using Ambit-SMIRKS. For GLORY, any 

product containing less than three heavy atoms is not included in the set of predicted 

metabolites. In order to apply the reaction rules correctly, i.e. to achieve the same 

predicted metabolites as SyGMa using the same rules, it was necessary to use an 

aromaticity model that could recognize aromaticity in rings with exocyclic 

heteroatoms. 

In GLORYx, a weighting factor of 1 is used for reaction rules labeled as 

"common" and a weighting factor of 0.2 is used for reaction rules labeled as 

"unusual". Thus, these weights maintain the same 5:1 ratio, but are scaled so that the 

final priority score is more reflective of the probabilistic concept, with values 

ranging from 0 to 1. 

Conclusions to the Chapter 2 

1. The methods for the synthesis of 2-methyl-3-[(2-methoxyanilino)methyl]-

1H-quinoline-4-one (laboratory code VAZ_07) are presented. 

2. The prospects for in-depth pharmacological study of 2-methyl-3-[(2-

methoxyanilino)methyl]-1H-quinoline-4-one as a potential API with sedative and 

nootropic effects are substantiated. 

3. The choice and analysis of the calculation algorithms used in the work of 

online computer prediction systems for possible metabolic pathways in the human 

body was substantiated. 
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CHAPTER 3. PREDICTION OF PROBABLE METABOLIC PATHWAYS 

OF 2-METHYL-3-[(2-METHOXYANILINO)METHYL]-1H-QUINOLINE-4-

ONE 

 

In order to predict the possible pathways of biotransformation of a promising 

compound – 2-methyl-3-[(2-methoxyanilino)methyl]-1H-quinolin-4-one 

(laboratory code VAZ_07), five different online resources that are freely available 

were used, namely: 

1) Xenosite (https://xenosite.org/) 

2) SMARTCyp (https://smartcyp.sund.ku.dk/mol_to_som) 

3) Way2Drug RA (http://www.way2drug.com/RA) 

4) Biotransformer 3.0 (http://biotransformer.ca) 

5) GLORYx (https://nerdd.zbh.uni-hamburg.de) 

According to the results of prediction of possible pathways of VAZ_07 

metabolism using the online service Xenosite, the most likely direction is unstable 

oxidation, i.e. O-demethylation with the formation of the corresponding 4ʹ-hydroxy 

derivative. Oxidative deamination of the amino methyl fragment at position 3 of the 

quinolone ring is also possible by the classical mechanism, i.e. formation of the 

corresponding aldehyde and amine. Stable oxidation, i.e., aromatic or aliphatic 

hydroxylation, is also a possible direction of biotransformation of the molecule 

(Fig. 3.1). 

According to the prediction results, the methyl group at position 2 of the 

quinolone cycle is the most reactive. In such a scenario, as a result of further 

oxidation of the hydroxymethyl group to the carboxyl group, the generation of 

metabolites with new pharmacological properties – kynurenic acid derivatives – is 

predicted. Kynurenic acid (4-hydroxyquinoline-2-carboxylic acid) is a tryptophan 

metabolite and is formed from kynurenine under the action of kynurenine 

aminotransferase [80]. 

 



 

 

 

Fig. 3.1 Results of prediction of possible metabolic pathways of VAZ_07 using the online service Xenosite 

3
9
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In the brain, kynurenic acid acts as an endogenous antagonist of the glycine site 

of NMDAR, which determines the interest in kynurenic acid as a potential 

pharmacocorrector of pathological conditions accompanied and burdened by 

excitotoxicity. A significant problem in in vivo studies was the low permeability of 

this molecule through the blood-brain barrier [80], so researchers focused on its 

chemical modification to find kynurenic acid derivatives with physicochemical 

properties that can overcome this limitation. 

Thus, the results of the calculations indicate that some of the effects of VAZ_07 

pharmacodynamics, in particular its anti-amnesic properties, may be related not only 

to the direct action of the compound on certain receptor systems in the brain, but also 

to active metabolites formed as a result of biotransformation. 

In addition to predicting the possible directions of biotransformation of 

molecules within the first phase of metabolism, the Xenosite software package 

allows to assess the safety of a promising compound in terms of reactivity, as well 

as the possibility of formation of toxic metabolites. 

According to the results of the prediction, VAZ_07 has low probability of 

formation of quinones or epoxides (Fig. 3.2). 

 

Fig. 3.2 Results of prediction of the possibility of formation of highly reactive 

quinones and epoxides as metabolites of VAZ_07 (online service Xenosite) 



 

 

 

Fig. 3.3 Results of predicting the reactivity of VAZ_07 in the human body using the online service Xenosite

4
1
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Fig. 3.3 shows the results of predicting the reactivity of the test molecule, i.e., 

the potential interaction with certain structures in the human body. It is shown that 

VAZ_07 has low indicators of potential interaction with the reduced glutathione 

system, proteins, and low potential for cyanide formation. Nevertheless, there is a 

certain probability of interaction with DNA material, which is unlikely to occur in 

vivo, since it is unlikely that this molecule will be able to penetrate directly into the 

cell nucleus, at least in unchanged form. 

The analysis of the prediction results using the online SMARTCyp system 

showed that different CYP isoforms can catalyze oxidation processes, namely 

O-demethylation, oxidative deamination and aromatic hydroxylation at different 

positions (Figs. 3.4, 3.5 and 3.6). 

With the participation of the CYP3A4 isoform, the most likely directions of 

biotransformation of VAZ_07 are oxidative deamination of the aminomethyl 

fragment at position 3 of the quinolone ring and O-demethylation, aromatic 

hydroxylation of the para- and ortho-positions of the phenyl substituent and 

aliphatic hydroxylation of the methyl group at position 2 of the heterocycle 

(Fig. 3.4). 

 

Fig. 3.4 Results of predicting possible pathways of VAZ_07 metabolism 

involving CYP3A4 (SMARTCyp software package) 
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Fig. 3.5 Results of predicting possible pathways of VAZ_07 metabolism 

involving CYP2C9 (SMARTCyp software package) 

 

 

 

Fig. 3.6 Results of predicting possible pathways of VAZ_07 metabolism 

involving CYP2D6 (SMARTCyp software package)  
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If oxidative deamination predictably leads to a complete loss of the original 

molecular architecture, O-demethylation does not significantly affect the activity 

profile and can be considered as an intermediate step, aromatic hydroxylation is also 

unlikely to be interesting in terms of pharmacological activity of metabolites, then 

aliphatic hydroxylation of the methyl group again opens the prospect of further 

oxidation to biologically active kynurenic acid derivatives. 

The results of predicting the possible pathways of VAZ_07 metabolism 

involving CYP2C9 and CYP2D6 indicate mainly the same directions as those 

involving CYP3A4 (Figs. 3.5 and 3.6). 

It should be noted that the results of predicting the directions of 

biotransformation of VAZ_07 using different systems with different algorithms 

largely coincide or correlate well with each other. 

Fig. 3.7 shows a fragment of the protocol for predicting possible pathways of 

VAZ_07 metabolism using the online Biotransformer system. In total, the system 

calculated the possibility of formation of 11 different metabolites, the vast majority 

of which are products of aromatic hydroxylation at different positions of both the 

quinolone heterocyclic system and the phenyl substituent. This is quite predictable 

given the biochemical nature of the processes catalyzed by CYP enzymes. One of 

the possible directions is also the O-demethylation of the methoxyl substituent in the 

para-position of the phenyl substituent of the aminomethyl fragment. Among the 

predicted metabolites is also a 2-hydroxymethyl derivative, which is a product of 

aliphatic hydroxylation of a reactive methyl group at position 2 of the quinolone 

ring. Also, some of the predicted metabolites indicate the possibility of oxidative 

deamination. Thus, it can be stated that the main directions of biotransformation 

predicted by the Biotransformer system completely coincide with the results of 

previous programs, despite the differences in calculation algorithms. 



 

 

Fig. 3.7 Excerpt from the protocol for predicting possible metabolic pathways of VAZ_07 using the 

online system Biotransformer

4
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The analysis of the predicted metabolites of VAZ_07 using the GLORYx 

online system confirms that the main pathways of metabolic transformations of the 

studied molecule are O-demethylation (which begins with hydroxylation of the 

corresponding methoxyl group), aromatic hydroxylation, oxidative deamination of 

the amino methyl fragment at position 3 and oxidation of the methyl group at 

position 2 of the quinolone ring (Fig. 3.8). 

 

Fig. 3.8 Results of predicting possible metabolic pathways of VAZ_07 using 

the online GLORYx system 

One of the most informative is the forecasting results using the online service 

Way2Drug RA, which are graphically represented in Fig. 3.9. This software product 

provides only indicators of the probability of a particular process, so visualization 

of the results requires a certain expert understanding of the nature of 

biotransformation changes to extrapolate specific processes that may occur with 

respect to the compound under study. 



 

Aromatic 

hydroxylation

Epoxidation

0,431

0,459

N-dealkylation

0,809

0,696

0,721

0,535

О-demethylation

N-glucuronidation

0,521

0,555

Glutathionation

 

Fig. 3.9 Results of predicting possible metabolic pathways of VAZ_07 using the Way2Drug RA system (only the pathways 

with the highest DeltaP values are shown) 
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The prediction results are shown in Fig. 3.9, and the main pathways predicted 

are the variants of aromatic hydroxylation involving carbon atoms at positions 6, 7, 

and 8 of the quinolone heterocyclic system as well as para-position of the phenyl 

substituent. The most reactive in terms of aromatic hydroxylation is position 6 of the 

quinolin-4-one system (Fig. 3.9). It should be noted that according to the forecast of 

the Way2Drug RA program, the directions of O-demethylation and N-dealkylation 

also have a high probability. In addition, in addition to the reactions of the first phase 

of metabolism, this system suggests the processes of the synthetic phase – 

conjugation with glucuronic acid at the nitrogen atom of the aminomethyl fragment 

and with glutathione with the participation of ortho-positions to the methoxyl group 

in the phenyl substituent. 

Special attention should be paid to the GLORYx module of the system, which 

allows predicting the substrate specificity of a compound to certain CYP isoforms 

(Fig. 3.10). 

 

Fig. 3.10 Substrate specificity of VAZ_07 to cytochrome P450 isoforms 

according to the results of the online GLORYx system 

 

Such an assessment makes it possible to predict possible metabolic 

interactions of a substance with known cytochrome substrates at the early stages of 

research on promising molecules when used simultaneously. As can be seen from 

Fig. 3.10, VAZ_07 is highly likely to be metabolized by cytochromes CYP1A2 and 

CYP2D6. 

Thus, a comprehensive analysis of the results of predicting the possible 

pathways of VAZ_07 metabolism using five different online systems allows us to 

conclude that the molecule 2-methyl-3-[(2-methoxyanilino)methyl]-1H-quinolin-4-

one can be intensively metabolized with the participation of cytochrome P450 
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enzyme systems. The main directions are aromatic hydroxylation of the test 

substance molecule with the participation of carbon atoms of the quinolone 

heterocyclic system, O-demethylation of the methoxy group, N-dealkylation of the 

amino methyl fragment. In this case, the predicted metabolites are unlikely to 

significantly affect the overall pharmacological activity profile of the parent 

molecule. However, the possible directions of aliphatic hydroxylation at the methyl 

group at position 2 of the heterocycle to kynurenic acid derivatives suggest that the 

proven pharmacodynamic effects of VAZ_07, namely nootropic and sedative, may 

be at least partially provided by these pharmacologically active metabolites. 

The general regularities of biotransformation transformations of 2-methyl-3-

[(2-methoxyanilino)methyl]-1H-quinolin-4-one completely coincide and are fully 

consistent with the current views of medicinal chemistry on the reactivity of 

xenobiotics under the influence of cytochrome P450 enzyme systems in the human 

body. The results obtained using different systems differ somewhat, which is fully 

explained by the difference in the calculation algorithms underlying the software 

products. 

 

Conclusions to the Chapter 3 

1. A computer prediction of possible pathways of biotransformation of a 

promising compound - 2-methyl-3-[(2-methoxyanilino)methyl]-1H-quinolin-4-one 

(laboratory code VAZ_07) was performed using five different online resources that 

are freely available. 

2. The results obtained indicate that the molecule 2-methyl-3-[(2-methoxy-

anilino)methyl]-1H-quinoline-4-one in the human body can be intensively 

metabolized with the participation of cytochrome P450 enzyme systems. 

3. The most probable pathways of metabolism of the test compound are 

aromatic hydroxylation of the test substance molecule with the participation of 

carbon atoms of both the quinolone heterocyclic system and the phenyl substituent, 

O-demethylation of the methoxyl group, N-dealkylation of the amino methyl 

fragment. 
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4. The predicted direction of aliphatic hydroxylation at the methyl group at 

position 2 of the heterocycle to kynurenic acid derivatives suggests that the proven 

pharmacodynamic effects of VAZ_07 may be partially provided by these 

pharmacologically active metabolites. 

5. According to the results of the GLORYx system module, which allows 

predicting the substrate specificity of a compound to certain CYP isoforms, the 

investigated compound is most likely to be metabolized by cytochromes CYP1A2 

and CYP2D6. 

6. According to the results of the Xenosite program, 2-methyl-3-[(2-methoxy-

anilino)methyl]-1H-quinolin-4-one has low potential interaction with the reduced 

glutathione system, proteins and low potential for the formation of cyanides, 

quinones or epoxides, However, there is a certain probability of interaction with cell 

DNA.  
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GENERAL CONCLUSIONS 

1. The article systematizes and analyzes the current scientific literature on 

the main in vitro and in silico methods used to predict possible pathways of chemical 

metabolism in the human body. The analysis confirms the prospects of using the 

software to predict possible metabolites of a potential drug at the early stages of its 

development. 

2. The methods for the synthesis of 2-methyl-3-[(2-methoxyanilino)methyl]-

1H-quinolin-4-one (laboratory code VAZ_07) are presented. The prospects of in-

depth pharmacological study of VAZ_07 as a potential API with sedative and 

nootropic properties are substantiated. The choice and analysis of the calculation 

algorithms used in the work of online computer prediction systems for possible 

metabolic pathways in the human body was substantiated. 

3. The computer prediction of possible pathways of biotransformation of a 

promising compound with sedative and nootropic action – 2-methyl-3-[(2-methoxy-

anilino)methyl]-1H-quinolin-4-one (laboratory code VAZ_07) using five different 

online resources that are freely available. 

4. The most probable pathways of the metabolism of the test compound are 

aromatic hydroxylation of the test substance molecule with the participation of 

carbon atoms of both the quinolone heterocyclic system and the phenyl substituent, 

O-demethylation of the methoxyl group, N-dealkylation of the amino methyl 

fragment.  Predicted directions of aliphatic hydroxylation at the methyl group at 

position 2 of the heterocycle to kynurenic acid derivatives support the assumption 

that the proven pharmacodynamic effects of VAZ_07 may be partially provided by 

these pharmacologically active metabolites. 

5. According to the results of the GLORYx system module, which allows 

predicting the substrate specificity of a compound to certain CYP isoforms, the 

tested compound is most likely metabolized by cytochromes CYP1A2 and CYP2D6. 

6. According to the results of the Xenosite program, 2-methyl-3-[(2-

methoxyanilino)methyl]-1H-quinolin-4-one has low potential interaction with the 

reduced glutathione system, proteins and low potential for the formation of cyanides, 

quinones or epoxides, however, there is a certain probability of interaction with cell 

DNA.   
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Relevance of the topic. properties, 2-methyl-3-[(2-methoxyanilino)methyl]-1H-

quinolin-4-one. During metabolic transformations of biologically active molecules 

in the human body, metabolites with physicochemical and pharmacological 

properties that differ significantly from those of the parent compounds may be 

produced, which is important both in terms of efficacy and safety of medicines. 

Experimental studies of possible pathways of biotransformation of new molecules 

in vitro and in vivo are always non-trivial and resource-intensive tasks. That is why 

the use of computer prediction of possible metabolic pathways of a potential drug 

candidate at the initial stages is a fully justified and effective approach that allows 

identifying metabolic sites, predict the structures of the formed metabolites, 

metabolic rate, and specificity of substrates to cytochrome P450 enzymes. Such 

studies are of particular importance at the early stages of studying the properties of 

an API candidate in order to reduce the risk of withdrawal of drug candidate 

compounds at the stage of clinical trials due to the metabolic characteristics of the 

molecules. The chosen topic of the qualification work is aimed at addressing such 

issues, which determines its relevance. 

Theoretical level of work. The qualification work was performed at a high 

theoretical level, since its results, in addition to their practical significance, have 

significant methodological potential. The methodological approach to predicting 
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algorithms developed in the course of the work should be recommended for use by 

scientists in their applied research. 

Author's suggestions on the research topic. The results obtained by the author 

indicate that the molecule 2-methyl-3-[(2-methoxyanilino)methyl]-1H-quinolin-4-



 

one can be intensively metabolized by cytochrome P450 enzyme systems. The most 

likely pathways of metabolism of the compound under study are aromatic 

hydroxylation involving carbon atoms of both the quinolone heterocyclic system and 

the phenyl fragment. The predicted direction of aliphatic hydroxylation at the methyl 

group at position 2 of the heterocycle to kynurenic acid derivatives suggests that the 

proven pharmacodynamic effects of 2-methyl-3-[(2-methoxyanilino)methyl]-1H-

quinolin-4-one may be partially provided by these pharmacologically active 

metabolites. 

Practical value of conclusions, recommendations and their validity. The 

obtained results of the study expand the knowledge of possible metabolic pathways 

of 2-methyl-3-[(2-methoxyanilino)methyl]-1H-quinolin-4-one, a substance that is a 

promising compound with sedative and nootropic properties. The results obtained 

can significantly expand and deepen the understanding of both pharmacodynamic 

and pharmacokinetic features of a promising candidate for APIs, subject to further 

in-depth pharmacological research and implementation of the compound in medical 

practice. The conclusions are logically formulated on the basis of the data obtained 

and do not raise any doubts. 

Disadvantages of work. The qualification paper contains grammatical errors, 

incorrect hyphenations of chemical names, and some mistakes in the formatting of 

references, but they are minor and do not reduce the overall value of the paper. 
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University and can be recommended for defense at the Examination Commission. 
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Направляється здобувач вищої освіти Абделілах ЕЛЬГАРРАБ до захисту 

кваліфікаційної роботи 

за галуззю знань 22 Охорона здоров’я 

спеціальністю 226 Фармація, промислова фармація 

освітньою програмою Фармація 

на тему: «Прогнозування ймовірних шляхів метаболізму потенційного АФІ седативної та 

ноотропної дії». 

 

Кваліфікаційна робота і рецензія додаються. 

 

Декан факультету _______________________ / Світлана КАЛАЙЧЕВА / 

 

 

Висновок керівника кваліфікаційної роботи 

 

Здобувач вищої освіти Абделілах ЕЛЬГАРРАБ у повному обсязі виконав 

кваліфікаційну роботу. За актуальністю, методичним рівнем, теоретичним та практичним 

значенням, об’ємом виконаних досліджень кваліфікаційна робота відповідає вимогам і 

допускається до захисту в Екзаменаційній комісії. 

 

 

Керівник кваліфікаційної роботи 

 

______________    Ілля ПОДОЛЬСЬКИЙ 

 

«07» квітня 2023 р.  

 

 

Висновок кафедри про кваліфікаційну роботу 

 

Кваліфікаційну роботу розглянуто. Здобувач вищої освіти Абделілах ЕЛЬГАРРАБ 

допускається до захисту даної кваліфікаційної роботи в Екзаменаційній комісії. 

 

Завідувачка кафедри 

медичної хімії 

 

______________    Ліна ПЕРЕХОДА 

 

 

«21» квітня 2023 р.  

  



 

 

 

 

 

 

 

 

 

 

 

Qualification work was defended 

of Examination commission on 

«        » of June 2022 

With the grade _________________________ 

Head of the State Examination commission, 

DPharmSc, Professor 

__________________________ / Oleh SHPYCHAK / 

 


