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ANNOTATION

The computer prediction of the possible pathways of metabolism of a potential
APl with sedative and nootropic effects, 2-methyl-3-[(2-methoxyanilino)methyl]-
1H-quinoline-4-one, was performed. It was proved, that the molecule of the test
substance can be intensively metabolized by cytochrome P450 enzyme systems. The
most likely biotransformation pathways are aromatic hydroxylation involving
carbon atoms of both the quinolone heterocyclic system and the phenyl substituent,
O-demethylation of the methoxyl group, and N-dealkylation of the aminomethyl
fragment. The predicted direction of aliphatic hydroxylation at the methyl group at
position 2 of the heterocycle to kynurenic acid derivatives indicates that the proven
pharmacodynamic effects may be partially provided by these pharmacologically
active metabolites.

Key words: 2-methyl-3-[(2-methoxyanilino)methyl]-1H-quinolin-4-one,
metabolism,  Dbiotransformation, = computer  prediction, online systems,
pharmacological activity.

AHOTALISA

[IpoBeaeHO KOMIT IOTEpHE MPOTHO3YBaHHS MMOBIPHUX HUIAXIB META00III3My
noreHmiinoro  A®I  cematmBHOI Ta  HooTpomHoi  mii  2-mertmi-3-[(2-
METOKCHUaHLUIIHO )MeTw1 |-1H-Xx1H0M1H-4-0HYy. HoBeneHo, 101(0) MOJIEKyJa
JOCHI)KYBaHOT PEYOBMHU MOXKE IHTEHCHBHO METa0O0I3yBaTUCh 3a YYacTiO
dbepmentHux cuctem 1mToxpomy P450. HaitOuemn iMOBIpHUMH —HUISIXaMH
oioTpancdopmarili € apoMaTUUHE T'1JIPOKCUIIIOBAHHS 32 YUaCTIO aTOMIB KapOOHY SIK
TeTePOIMKIIYHOI CHUCTEMH XIHOJOHY, Tak 1 QeHutpHOr0 3amicHuka, O-
JEMETUIIIOBAHHS METOKCWJIbHOI TpynH, N-IeankiayBaHHS aMiHOMETHIIBHOTO
dbparmenty. [IporHo3oBanuii HampsMOK anipaTHYHOTO TIAPOKCHIIIOBAHHS 3a
METUJIBHOIO TPYMNOI0 B TMOJOXKEHHI 2 TeTEePOLMKIY A0 MOXITHUX KIHYpPEHOBOI
KHUCIIOTH CBITYUTH, IO JIOBeAeH! (papMakonuHaMiuHi €(eKTH MOXKYTh YaCTKOBO
3a0e3MnevyBaThCh caMe MUMH (PapMaKOJIOTTYHO aKTUBHUMHU METa0OJITAMHU.

Kmouosi cnosa: 2-mernin-3-[(2-merokcuaninino )Metui|-1H-xiHomiH-4-0H,
MeTabomi3M, OioTpachopmallis, KOMI IOTEpHE MPOTHO3YBaHHS, OHJIAWH CHCTEMH,

(dhapMakoJIoriyHa aKTUBHICTb.
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INTRODUCTION

Relevance of the topic. The qualification work is devoted to the study of
possible metabolic pathways of 2-methyl-3-[(2-methoxyanilino)methyl]-1H-
quinolin-4-one as a promising candidate for APIs with sedative and nootropic
properties. In vitro and in silico drug metabolism models are regularly used in drug
research and development as tools for assessing pharmacokinetic variability and the
risk of drug interaction. The use of in vitro and in silico predictive approaches has
such advantages as rational design of clinical drug interaction studies, minimization
of human risk in clinical trials, and cost and time savings due to less exhaustion in
the compound development process. That is why the use of computer prediction of
possible metabolic pathways of a potential drug candidate at the initial stages is a
fully justified and effective approach that allows to identify metabolic sites, predict
the structures of the metabolites formed, the intensity of metabolism and the
specificity of substrates to cytochrome P450 enzymes. The chosen topic of the
qualification work is aimed at solving these issues, which determines its relevance.

Purpose of the study. Prediction of probable metabolic pathways of
2-methyl-3-[(2-methoxyanilino)methyl]-1H-quinoline-4-one  as a promising
candidate for APIs with sedative and nootropic properties.

To achieve the goal, the following tasks were set:

1. To systematize and analyze the scientific literature on the main
mathematical and statistical approaches and methods used to predict possible
pathways of chemical metabolism in the human body.

2. To perform a computer prediction of possible pathways of
biotransformation of a promising compound - 2-methyl-3-[(2-methoxy-
anilino)methyl]-1H-quinolin-4-one (laboratory code VAZ_07) using five different
online resources that are freely available.

3. Based on the systematization of the obtained results, identify the main
possible pathways of biotransformation of 2-methyl-3-[(2-methoxyanilino)methyl]-
1H-quinolin-4-one. Summarize the data obtained by in silico methods and identify
a potential range of metabolites for further in vitro and in vivo studies.

4. Based on the analysis of coincidences and discrepancies in the results
obtained using different software products, determine the correlation of the main



trends in the directions of biotransformation.

Object of the study. A promising APl with sedative and nootropic action
2-methyl-3-[(2-methoxyanilino)methyl]-1H-quinoline-4-one.

Subject of the study. Probable metabolic pathways of 2-methyl-3-[(2-
methoxyanilino)methyl]-1H-quinoline-4-one in the human body.

Methods of the study:

1. Analysis and systematization of scientific and patent literature.

2. Insilico prediction of possible pathways of xenobiotics biotransformation in
the human body.

3. Methods of extrapolation and visualization of the results of prediction of
possible metabolites.

The practical value of the results. The results of the study expand the
knowledge of possible metabolic pathways of 2-methyl-3-[(2-methoxy-
anilino)methyl]-1H-quinolin-4-one, a substance that is a promising APl with
sedative and nootropic effects. The results obtained can significantly expand and
deepen the understanding of both pharmacodynamic and pharmacokinetic features
of the promising API candidate, subject to further in-depth pharmacological research
and introduction of the compound into medical practice.

Elements of scientific research. For the first time, a computer prediction of
possible pathways of biotransformation of 2-methyl-3-[(2-methoxyanilino)methyl]-
1H-quinolin-4-one as a promising candidate for APIs with sedative and nootropic
properties.

Structure and scope of the qualification work. The qualification work
consists of an introduction, 3 chapters, general conclusions, and a list of references
(80 items). The total volume of the work is 51 pages. The work contains 1 scheme,
3 tables and 16 figures.



CHAPTER 1. MODERN APPROACHES TO COMPUTER PREDICTION
OF MEDICINAL SUBSTANCE METABOLISM IN THE HUMAN BODY

(Literature review)

1.1 Role of computational metabolism prediction methods in drug

development

As our understanding of the metabolic reactions that determine the fate of
drugs has recently deepened significantly, drug metabolism has attracted increasing
attention as a critical factor in drug discovery [1, 2]. The fate of substances such as
drugs and xenobiotics introduced into our bodies is largely governed by three phases
of drug metabolism: phase I, the introduction of a reactive group by oxidation,
reduction, or hydrolysis, among others; phase Il, conjugation with various
fragments; and phase 111, the elimination of xenobiotics and metabolites from liver
and intestinal cells. These transformation processes can turn compounds into
inactive, active, or toxic metabolites. Not surprisingly, since it is responsible for the
clearance of ~70% of clinical drugs, metabolism is intensively studied as part of
drug development efforts [3].

Natural compounds have recently attracted considerable research attention
due to their inherent advantages and high potential as drug candidates [4]. Moreover,
the structural similarity of some natural compounds to metabolites found in the
human body makes metabolism a critical factor in determining the efficacy of natural
medicines [5]. For example, historical opioid drug candidates are metabolized into
more potent metabolites, such as (dihydro)codeine, which in turn is metabolized into
(dihydro)morphine [6]. Given the large number of endogenous enzymatic reactions
that influence drug modification through (de)activation and (de)toxification,
determining how a drug is metabolized is an important step in drug discovery.

In recent decades, numerous experimental technologies have been used to
study drug metabolism and fate [7, 8]. The traditional method of drug discovery -
target-to-target, target-to-ligand, and ligand optimization — is expensive, costing
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more than $200 million for an average drug, and time-consuming, with a typical
discovery period of 4-5 years [9]. In addition, due to the inability to accurately
reproduce biological environments in vivo, such methods are relatively imprecise
and are still considered low throughput, given the scale of combinatorial structural
variations in chemical compounds.

As part of drug discovery efforts, numerous advances have been made in
predicting drug metabolism using in silico approaches, and various aspects of these
advances have been reviewed [10-14]. These include tools for predicting drug
metabolism based on the interaction of drugs with cytochrome P450 (CYP450)
enzymes and their metabolic endpoints [12, 14], tools for predicting ADMET
(absorption, distribution, metabolism, excretion, and toxicity) properties of drugs
and their associated solubility permeability, and bioavailability [10], as well as
approaches to predicting the inductance of drug-metabolizing enzymes and
transporters that affect the concentration of drugs in blood plasma, which can cause
undesirable or prolonged effects or side effects [13].

Because of these observations, in silico approaches are increasingly being
used to predict the metabolic transformation of drugs [15] and as such are considered
the best strategy to "fail early and fail cheap", which reduces costs, saves time, and

thus reduces churn rates in the later stages of drug discovery.

1.2 In silico approaches to predicting molecular biotransformation

1.2.1 Prediction based on quantitative structure-activity relationships and
machine learning approaches

The concept of quantitative structure-activity relationship (QSAR), developed
in the early 1960s by Hansch/Fujita [16] and Free/Wilson [17] and widely used in
drug discovery, suggests that molecules with similar structures potentially exhibit
similar chemical and biological activities [18]. The initial concept of the structure-
activity relationship dates back to 1868, when Cram-Brown and Fraser introduced

the idea of correlating the chemical composition of a compound with its
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physiological properties in biological systems [19]. QSAR-based models are widely
used at the optimization stage of drug development to assess various drug properties
(including toxicity) and, as a result, reduce the number of promising lead compounds
identified through screening, which ultimately minimizes time, costs and labor. The
European Commission's REACH (Registration, Evaluation and Authorization of
Chemicals) regulation [20] allows the use of various approaches, such as QSAR,
provided that the results are proven to be highly reliable [21].

The QSAR approach uses experimental datasets that include the biological
activity of chemical compounds, their chemical and physical characteristics
represented as molecular descriptors [22], and statistical methods to correlate these

molecular descriptors with biological activity [23] (Fig. 1.1).
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Figure 1.1 QSAR approach to in silico prediction
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Table 1.1

List of the main online systems for calculating molecular descriptors
Software Operating System No. of available descriptors  License
ADAPT" Unix/Linux 265 Free
ADMET Predictor” (PCB module) Windows 297 Commercial
ChemAxon® (Calculator plugins)  Windows/Unix/Linux > 500 Commercial
Codessa" Windows > 1400 Commercial
Corina Symphony* Windows 786 Commercial
DRAGON 7.0' Windows/Unix/Linux 5270 Commercial
E-Dragon® Web service 1666 Free
MOE" Windows/Unix/Linux > 400 Commercial
Molconn-Z' Windows/Unix/Linux > 1000 Commercial
MOLGEN QSPR' Windows 708 Commercial
PaDEL-descriptor (CDK)" Java JRE 1875 Free
PowerMV' Windows 122 Partially Free™
PreADMET" Windows 955 Commercial
Open Babel” Windows/Linux > 20 Free
QikProp” Windows/Linux > 20 Commercial
ACD Labs/Percepta”’ Web service & modules > 40 Free
MOPAC' Windows/Linux 24 Free
EPI Suite’ Windows 13 Free

& http://research.chem.psu.edu/pcjgroup/adapt.html

b http://www.simulations-plus.com/software/admet-property-prediction-gsar/
¢ https://www.chemaxon.com/products/

4 http://www.codessa-pro.com/

¢ https://www.mn-am.com/products/corinasymphony

f https://chm.kode-solutions.net/products_dragon.php

9 http://www.vcclab.org/lab/edragon/

h http://www.chemcomp.com/MOE-Cheminformatics and QSAR.htm

" http://www.edusoft-lc.com/molconn/

i http://molgen.de/download.html

K http://www.yapcwsoft.com/dd/padeldescriptor/

! https://www.niss.org/research/software/powermv

m Commercial affiliates available

" https://preadmet.omdrc.kr/

° http://openbabel.org

P https://www.schrodinger.com/qikprop

9 https://www.acdlabs.com/products/percepta/

" http://openmopac.net/

S https://www.epa.gov/tsca-screening-tools/download-epi-suitetm-estimation-program-interface-v411
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Molecular descriptors are arithmetic values that reflect the physicochemical
properties of compounds and can be classified as 1D, 2D, or 3D descriptors,
depending on the amount/type of information provided. The most common types of
descriptors used in QSAR are constitutional, electronic, topological, and geometric
descriptors, which include molecular weight, total number of atoms, total number of
carbon atoms, atomic lattice, total number of bonds, and VVan der Waals area, among
others. A wide range of software and web-based tools are available to calculate
molecular descriptors, as shown in Table 1.1; there are also various QSAR systems
with their own integrated descriptor generators, including CASE Ultra
(http://www.multicase.com/case-ultra) and Leadscope
(http://www.leadscope.com/).

Typically, QSARSs that predict the metabolic transformation of endogenous or
exogenous compounds are built for hepatic enzymes of the CYP450 family (which
metabolize most drugs into toxic chemical compounds [24]) and are known for their
reliability in predicting toxicity; as such, they provide valuable information for large-
scale virtual drug efficacy screening.

Table 1.2 lists common QSAR-based models built to predict drug metabolism
reactions. Several of the other models listed in the table (e.g., IDsite, SMARTcyp)
can also predict the site at which a metabolic transformation occurs in a chemical
compound. In addition, the CQSAR database, created in 2003 and available to users
[25], contains more than 18,000 QSAR equations and associated biophysical data.

The QSAR Data Bank, another repository that archives in silico descriptive
and predictive models such as QSARs, allows the research community to share and
present their QSAR data [26]. QSARSs have been used since the early era of drug
discovery, but their application has been limited to small linear datasets. However,
advanced methods based on direct scoring and/or machine learning algorithms that

can model complex nonlinear data sets have been applied recently [27].
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Table 1.2

List of the main online systems for predicting drug metabolism

Software Operating system Target License

ADME WORKS Predictor” Windows/Linux CYP450 isoforms” Commercial

ADMET Predictor” (Metabolism Windows CYP450 isoforms’ Commercial

module)

admetSAR" Web service CYP450 isoforms’ and P-glycoprotein Free

PreADMET* Web service Windows CYP450 isoforms” and P-glycoprotein Free (Web service) Commercial
(PC version) (PC version)

SMARTCyp' Web service CYP450 isoforms’ Free

SOMP (Way2Drug)* Web service CYP450 isoforms' and UDP- Free

glucuronosy Itransferase

MetaSite™ Windows/Linux CYP450, FMO3, and AOX1 Commercial

RS-WebPredictor” Web service CYP450 isoforms” Free

Meteor Nexus” Windows User query structure Commercial

ACD Labs/Percepta’ Windows/Linux User 2D structure/SMILE Commercial

MetabolExpert’ Windows/Linux User 2D structure/SMILE Commercial

Meta-PC* Unix/Linux Query chemical structure Commercial

syGMa' Windows/Linux Query chemical structure Free (for academic institutions)

TIMES" Unix/Linux User query structure Commercial

MetaPath (OASIS)" Unix/Linux User query structure Commercial

IDSite” - CYP isoform 2D6 -

Metabolizer (ChemAxon)* Windows/Linux User query structure Commercial

a http://www.fgs.pl/en/chemistry/products/admeworks-

m http://www.moldiscovery.com/software/metasite/

predictor
b 2D and 3A4

¢ http:/AMwww.simulations-plus.com/software/admet-property-

n http://reccr.chem.rpi.edu/Software/RS-WebPredictor/
0 2C9, 2D6, 3A4, 1A2, 2A6, 2B6, 2C8, 2C19 and 2E1
p https://www.lhasalimited.org/products/meteor-

prediction-gsar/metabolism/

d 1A2, 2A6, 2B6, 2C8, 2C19, 2C9, 2D6, 2E1, and 3A4
e http://Immd.ecust.edu.cn:8000/

f1A1, 1A2, 2A5, 2C9, etc.

g https://preadmet.bmdrc.kr/

h 2C9, 2C19, 2D6, and 3A4

i https://smartcyp.sund.ku.dk/

j 3A4 isoform

k http://www.way2drug.com/SOMP/

11A2, 2C9, 2C19, 2D6 and 3A4

nexus.htm

q https://www.acdlabs.com/products/percepta/

r http://www.compudrug.com/metabolexpert

s http://www.multicase.com/meta-pc

t https://sygma.readthedocs.io

u http://oasis-Imc.org/products/software/times.aspx

v http://oasis-lmc.org/products/software/metapath.aspx
w https://pubs.acs.org/doi/abs/10.1021/ct200462q

X https://docs.chemaxon.com/display/docs/Metabolizer
y https://portal.genego.com/
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The rapid progress in the development of new machine learning methods in
computer science has inspired the development of thousands of QSAR models for
accurate drug metabolism prediction based on methods other than linear and
multiple linear regression [20, 28]. Machine learning, defined as a computational
method that is trained on a set of test data to build a model for classifying unknown
data [29], was primarily used to develop QSAR models [30]. The application of
machine learning approaches in modern drug discovery has accelerated the process
of scanning and screening out ineffective compounds, achieving a significant
reduction in time and cost compared to experimental screening methods [31].
Machine learning is better suited for extracting non-parametric and nonlinear
relationships from data sets, which allows for the development of in silico models
with better predictive performance [32].

Several machine learning methods (e.g., neural network, decision tree, support
vector machine, k-nearest neighbor) have been successfully used to build more
accurate QSAR models [33], which take a set of descriptors from a large data set as
input and create a classification model that predicts the biological activity of the
requested compound as output.

Currently, machine learning is widely used in the field of computer-assisted
drug discovery, which allows predicting the interaction between a ligand and a target
protein, and thus facilitates the development of new drugs [34]. It also aims to predict
the ADMET properties of drugs, which ultimately facilitates the development of safe
and promising agents [35]. Drug metabolism is divided into several phases, each of
which has numerous enzymes that play a role in drug metabolism, so a large number
of machine-learning models have been built to classify drug fate based on whether
the drug will be metabolized by certain enzymes or not [35].

Recently, increased attention has been paid to predicting drug toxicity using
other machine learning methods, such as neural networks and deep learning [36],
which involve the use of powerful multilayer interconnected neural networks
consisting of processing units, referred to as nodes [37]. Examples of architectures

used to predict biological activity include convolutional, autoencoder, and recurrent
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neural networks [38]. The rapid increase in pharmaceutical data and computing
power has inspired the application of neural networks and deep learning in a variety
of fields, including bioinformatics [39], chemical informatics [40], structure
prediction [41], and drug discovery [42].

The emergence of computer-based prediction is an important turning point in
the history of drug discovery, as a number of machine learning-based models are
now available for predicting drug toxicity [43]. However, their application is still
limited by such drawbacks as the tendency to overfit data and the difficulty in
choosing the appropriate algorithm and descriptors for the problem from among the
available ones [44]. An overfitted model occurs when the model is too complex or
the number of features/descriptors is too large compared to the size of the data set.
These problems result in a biased model that performs well on the training dataset
used to build the model but is unable to accurately predict using external datasets
[45].

1.2.2 Structural computing approaches

Identification of the structural properties of a protein provides insight into its
biological activity and allows the development of effective ligands for its binding.
Often, metabolic reactions occur at the site where the ligand binds to the target
protein. This site tells us a lot about the metabolic fate of the drug, and thus whether
the drug will be therapeutically active, inactive, or toxic. It also often provides
information that helps to optimize lead compounds.

To date, structural approaches are among the most successful and recognized
methodologies used in various fields of pharmaceutical research for drug
development [46]. These modern methods include techniques such as computational
docking and molecular dynamics, which are intensively used to study drug
metabolism by identifying the metabolic site [47] and molecular interactions,
information that contributes significantly to the drug discovery process [48].

The docking method considers the interaction between a small molecule and

an active site on a target protein and predicts the affinity of their binding interactions
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based on their docking orientation and the forces interacting between them. Protein-
ligand interactions are modeled using powerful computational tools, such as docking
algorithms [49] implemented in AutoDock Vina, GOLD, and DOCK software
packages, which predict the most favorable response. The construction of these
models is based on the assumption that structural information is closely related to
the metabolic fate of the drug [50]. The docking approach is widely used for the
rapid identification of promising lead compounds from large compound libraries.
Ligand-protein interactions often require structural changes to achieve better
interaction, and can be modeled using molecular dynamics simulations. Thus,
molecular dynamics simulations are often used in conjunction with docking
algorithms to further refine docking complexes by taking into account other
parameters such as solvent effects, which allows for more accurate drug candidates;
they are also used to predict the site of metabolism. Table 1.3 summarizes some of
the most common tools used to model protein-ligand docking.

Despite their many advantages, structural approaches require high
computational power to model structural flexibility. The processes of calculating the
binding energy and estimating the docking conformation require different methods
that can take from several seconds to several days, making these calculations
computationally expensive. In addition, the target protein and its ligand may undergo
structural changes to adapt their structures to the appropriate conformational state
[51]; thus, obtaining an accurate model replica is still a challenging task. However,
additional methods have been used to improve the accuracy of modeling, such as the
use of rotamer libraries [52] or soft docking simulations [53].

Rotamer libraries are used to predict the most suitable side-chain
conformations and remove unfavorable conformations, leading to the selection of
low-energy side-chain conformations and thus increasing modeling accuracy and
reducing modeling time. Soft docking can be performed using soft scoring functions
to make minor changes to the conformation of protein receptors, an approach that is

known to be computationally efficient [54].
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Table 1.3
List of basic tools for modeling protein-ligand docking

Program Operating system License
AutoDock Vina® Windows/Linux/Unix  Free

Open source
BetaDock" Linux Free
BSP-SLIM* Web service Free
DOCK 6.8° Windows/Linux/Unix  Free

Open source
Docking Web service Partially Free®

Server'

FlexAID" Windows/Linux/Unix  Free

Open source
Glide' Windows/Linux/Unix Commercial
GOLD Suite" Windows/Linux Commercial
idTarget' Web service Free
MOE"™ Windows/Unix/Linux Commercial
MOLS 2.0" Java Free

Open source
ParDock"” Web service Free
rDock” Linux Free

Open source
SwissDock" Web service Free
Virtual ToxLab' Windows/Unix/Linux Free (for academic

institutions)

a http://vina.scripps.edu/

b https://www.worldcommunitygrid.org/

¢ http://voronoi.hanyang.ac.kr/software.htm
d http://zhanglab.ccmb.med.umich.edu/BSP-

k https://www.ccdc.cam.ac.uk/solutions/csd-
discovery/components/gold/

SLIM/

e http://dock.compbio.ucsf.edu/DOCK_6/
index.htm

f http://www.dockingserver.com/web

g Commercial premium licenses
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Docking approaches have been thoroughly applied to predict drug toxicity in
silico, allowing to identify the binding of lead compounds to adverse proteins and
predict undesirable side effects and consequences [55]. For example, using docking
simulations, Ji et al. searched for potential protein partners for binding 11
antiretroviral drugs among 147 known proteins associated with adverse reactions
deposited in the DART (Drug Adverse Reaction Target) database to predict adverse
drug effects. They confirmed that the predicted proteins associated with adverse drug
reactions that caused side/toxic effects corresponded to the reported adverse
reactions that occurred as a result of drug-target interaction [56]. In 2011, the same
approach was used to predict the toxicity of melamine and its main derivative,
cyanuric acid. This analysis identified potential target proteins associated with
toxicity and provided a detailed understanding of the toxicity mechanism. In
particular, in addition to nephrotoxicity, melamine was also predicted to have a toxic
effect on the lungs [57]. Thus, a computational docking strategy can significantly
facilitate the prediction of drug toxicity.

Despite the significant progress in drug discovery achieved through structure-
based approaches, the widespread use of this strategy is hampered by numerous
limitations, not the least of which is the problem of prodrugs and their metabolic
conversion to another active compound(s) [58]. For example, reliable prediction of
the metabolic fate of a particular drug requires high-resolution experimental
structural data for all target proteins (e.g., enzymes). In addition, the analysis of
protein-ligand complexes (and hence accurate reaction prediction) is hampered by
the structural flexibility of proteins.

1.3 Application of in silico tools for predicting drug metabolic pathways

1.3.1 Prediction of the transformation of drugs into toxic metabolites
The metabolism of xenobiotics, such as drugs and other foreign substances,
involves certain important enzymatic reactions, in particular those mediated by

CYP450 enzymes expressed in the liver and small intestine. According to the
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literature, ~90% of drugs can be efficiently metabolized by six CYP450 enzymes
[59], whose activity can vary under the influence of factors such as genetic
polymorphisms, cytokine regulation, disease state, gender, age, and hormones [60].
Another example is the membrane-bound P-glycoprotein (encoded by the multidrug
resistance gene-1), which is expressed in various tissues, including intestinal
epithelium, liver cells, and cells that form the blood-brain barrier. These tissues are
known to act as biological barriers that limit the entry of various substances into
cells, and thus affect the distribution of drugs for further metabolism [61].

As indicated in Tables 1.1 and 1.2, there are a large number of computer
models for predicting enzymatic reactions, reflecting the strong influence of such
reactions on the properties of ADMETS, which lead to a decrease or increase in the

pharmaceutical effect of the drug [62].

1.3.2 Prediction of enzymatic reactions of drugs and enzymes

Endogenous enzymes in the human body can mediate the metabolic
transformation of administered drugs into inactive, active, or toxic chemical
compounds, which emphasizes the practical importance of predicting potential
chemical modifications of drugs. Drug metabolism involves enzyme-catalyzed
reactions; thus, a number of attempts have been made recently to predict enzyme-
mediated reactions. An example of this is the reported prediction of hydrolysis and
redox reactions. In this study, a machine learning-based model was built to predict
classes/subclasses of hydrolysis reactions (EC 3.b.c.d, b - 1, 2, and 5) and redox
reactions (EC 1.b.c.d,b -1, 2, 3, 4,5, 8, 13, and 14) [63], which allows predicting
the metabolic transformations of a molecule.

To predict the enzymatic reactions involved in metabolic pathways, one study
used a new approach to build a substrate-enzyme-product interaction network based
on the k-nearest neighbor method to provide information related to toxicity in
metabolic pathways. Substrate, enzyme, and products were encoded by molecular
descriptors and physicochemical properties, and the k-nearest neighbor algorithm

was used to build a predictive model. The substrate-enzyme-product interaction
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networks were represented as the main factors, and the optimal features were
selected using the maximum relevance, minimum redundancy and incremental
feature selection (MRMR-IFS) method. Of the 290 features, 160 were selected and
grouped into 10 different categories, including amino acid composition, predicted
secondary structure, hydrophobicity, hydrophobicity and amino acid composition,
predicted secondary structure, hydrophobicity, and polarity, among others [64].

In another study, a machine learning approach was recently used to
computationally predict the potential reactions of 1449 enzymes (including CYP450
enzymes) deposited in the BRENDA (Braunschweig Enzyme Database) [65] and
HMDB (Human Metabolome Database) [66] databases. In particular, it was
assumed that if a known molecule interacts with a certain enzyme, then the query
molecule should also interact with this enzyme if the physicochemical descriptors of
the query molecule are similar to those of the known molecule. Interestingly, this
model has shown the ability to predict enzymatic conversion by CYP450 enzymes
and the concomitant formation of toxic metabolites, and therefore it was concluded
that it is useful for predicting drug metabolism in terms of biological activity and
toxicity [67]. Thus, the above methods of predicting potential enzymatic reactions
have revolutionized in silico approaches and made a significant contribution to drug

screening and identification of potential new drugs.

1.3.3 Prediction of drug molecule-target interactions based on the concept of
pharmacological space

Based on the theory that proteins that mediate similar reactions are likely to
have substrate similarity, Yamanishi et al. [68] proposed a QSAR-based model for
predicting unknown drug-target interactions by introducing the concept of
pharmacological space, which integrates chemical structure and information about
the genomic profile of a protein. Based on the assumption that compounds with high
structural similarity are more likely to interact with similar target proteins, chemical
and genomic similarity was calculated and combined into a pharmacological space.

The prediction model was built using three datasets: a dataset of drug-target
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interactions obtained from various databases, a chemical dataset consisting of the
structures of chemical compounds expressed as a similarity matrix between two
compounds (chemical space), and a genomic dataset consisting of the amino acid
sequences of target proteins expressed as a similarity matrix (genomic space). The
chemical and genomic protein sequence datasets were combined into a
pharmacological space and calculated using a bipartite graph learning model. The
performance of the model was subsequently evaluated based on drug-target
interaction data, and it was shown that the developed model predicts both enzyme-
compound and protein interactions. enzyme-compound activity and protein
interactions with other factors such as ion channels, G-protein-coupled receptors,
and nuclear receptors. Thus, the model allowed us to reliably predict the interaction

of a set of protein-compound pairs.

1.4. Problems associated with building predictive models

The inconsistency of available experimental data used to build in silico
models is a major problem [69]. Predictive models rely heavily on experimental data
to build the model; thus, high variability in experimental assays caused by biological
variations and technical errors can lead to erroneous data and thus can introduce
inaccuracy in predictive models. The inaccuracy of in silico models can also result
from different experimental conditions for multiple resources collected, unbalanced
datasets, and molecular descriptor values that differ from instrument to instrument
[70]. The reliability of experimental data is confirmed if the results are consistent
and accurate within a standardized experimental protocol over time. Therefore, in
addition to considering the validity of in silico models, the quality of experimental
data should also be considered. There have been several attempts to take into account
the reliability of experimental data and their degree of uncertainty, efforts that often
improve the accuracy of predictions [71]. This highlights the fact that low prediction
accuracy may not only be the result of the in silico nature of the prediction tool, but
may also reflect the nature of biological experiments. Comprehensive databases such

as Drugbank, HMDB, and others such as MetaDrug and MetaCore are gradually
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becoming more robust through human curation, improved data mining algorithms,
and/or the addition of new experimentally validated data, which increases the
reliability of the datasets used by in silico models and thereby improves the accuracy
of the results. In silico methods have become a major innovation in attempts to
predict the fate of drugs, but building reliable predictive models remains a challenge.
Therefore, predictive models are tested and their accuracy, validity, and reliability
are confirmed using external validation datasets to determine whether the model is
acceptable for a particular purpose. For example, three web servers, SOMP,
SMARTcyp, and RSWebPredictor, which are used to predict metabolic site, were
compared for their prediction accuracy. Of these, the SOMP server was shown to have
a higher invariant prediction accuracy (similar to AUC) than the others, with a score
of 0.9, and thus is considered an adequate tool for drug metabolism prediction [72].
Thus, due to its central importance, metabolism in biological systems is
intensively studied, especially in the field of drug development. The high influence
of drug metabolism on drug efficacy and fate in biological systems has led to the
emergence of numerous in silico approaches and tools for predicting metabolic
reactions in recent decades. However, the limitations of these approaches cannot be
ignored. In particular, the fact that these methods are heavily dependent on
experimental data is a major concern, as inconsistent and erroneous data can lead to
inaccurate prediction models. Although the prediction of metabolic reactions is an
extremely challenging field, it has greatly facilitated the advancement of drug
discovery, continuing to show rapid improvement with the development of

computational methods and increased computing power.

Conclusions to the Chapter 1
1. The scientific literature on the main in silico approaches and methods
used to predict possible pathways of chemical metabolism in the human body was
systematized and analyzed.
2. The analysis confirms the prospects of using the software to predict

possible metabolites of a potential drug at the early stages of its research.
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CHAPTER 2. MATERIALS AND METHODS OF THE STUDY

The object of the study is 2-methyl-3-[(2-methoxyanilino)methyl]-1H-
quinolin-4-one (laboratory code VAZ_07), synthesized by Associate Professor of
the Department of Medicinal Chemistry, Doctor of Pharmaceutical Sciences
Vadym Zubkov (Fig. 2.1).

N
H
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H

Fig. 2.1 Structural formula of 2-methyl-3-[(2-methoxyanilino)methyl]-1H-
quinoline-4-one (VAZ_07)

2.1 Synthesis of 2-methyl-3-[(2-methoxyanilino)methyl]-1H-quinoline-4-
one

As a starting compound for the synthesis of 2-methyl-3-[(2-
methoxyanilino)methyl]-1H-quinoline-4-one,  2-methylquinolin-4-one  (starting
compound) was used, which was aminomethylated under Mannich reaction
conditions [73], and the resulting Mannich base (3-dimethylaminomethyl-2-
methylquinolin-4-one hydrochloride) upon reamination with ortho-anisidine
(2-methoxyaniline) forms 2-methyl-3-[(2-methoxyanilino)methyl]-1H-quinoline-4-
one (Scheme 2.1).

It is known that the Mannich reaction is unambiguously carried out only when
secondary amines are used, whereas ammonia and primary amines can react with
the replacement of all hydrogen atoms adjacent to the nitrogen. It has been confirmed
that the interaction of 2-methylquinolin-4-one with primary aliphatic amines,
anilines, and diethylamine under classical Mannich reaction conditions leads to the
formation of mostly by-products that are insoluble in most organic solvents. It is also
known that Mannich bases can be used as alkylating agents in reactions with amines

and methylenated compounds. Such alkylation is especially easy if the Mannich base
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is formed by an amine, which can be easily cleaved off, for example, by
dimethylamine. In this regard, the synthesis of 3-dimethylaminomethyl-2-methyl-
1H-quinolin-4-one was carried out, as well as the subsequent synthesis of

3-arylamino derivatives of 2-methylquinolin-4-one on its basis.

Scheme 2.1
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The hydrochloride of 3-dimethylaminomethyl-2-methyl-1H-quinoline-4-one
was obtained in two ways: by boiling 2-methylquinoline-4-one with formaldehyde
and dimethylamine hydrochloride in ethanol (method I), and by aminomethylation
of 2-methylquinoline-4-one with N,N-dimethylimmonium chloride (method II). The
use of imonium salts allows for an unambiguous synthesis, increases the yield of
target products compared to the conventional Mannich reaction, and simplifies the
reaction itself [44]. Thus, method Il is more suitable for the synthesis of
hydrochloride. The resulting salt, when boiled in toluene in the presence of
powdered NaOH, readily undergoes a transamination reaction with primary aliphatic

amines, anilines, and diethylamines to form the target 3-N-R-aminomethyl
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quinolones. The end of the reaction is determined by the end of the release of
dimethylamine from the reaction medium.

The key intermediate can be obtained by the interaction of the free base with
primary amines and diethylamine in boiling toluene (method B). However, the total
yield of the final products by this method in terms of hydrochloride was significantly
lower than the yields of syntheses using hydrochloride itself. This is apparently due
to the good solubility of 3-dimethylaminomethyl-2-methyl-1H-quinolin-4-one in
water and, accordingly, to the loss of the compound at the stage of obtaining a free
base [73].

The structure and identity of 2-methyl-3-[(2-methoxyanilino)methyl]-1H-
quinoline-4-one were confirmed by *H NMR spectroscopy and thin-layer

chromatography.

2.2  Pharmacological  properties of  2-methyl-3-[(2-methoxy-
anilino)methyl]-1H-quinoline-4-one

The investigated molecule became a promising object for pharmacological
study based on the results of a comprehensive screening study of its psycho- and
neurotropic properties conducted by Illya Podolsky, Associate Professor of the
Department of Medicinal Chemistry, Doctor of Pharmaceutical Sciences.

The screening was performed on white nonlinear mice at doses of 10 and
100 mg/kg using open field, elevated plus maze, rotarod test, Porsolt’s
immobilization test, and conditional passive avoidance reaction against
scopolamine-induced amnesia. At the end of the screening, the effect on the life
expectancy of mice in a model of acute normobaric hypoxia with hypercapnia was
studied [74].

The results of the VAZ 07 study in the open field test revealed the
psychotropic indifference of the test compound. In animals injected with 2-methyl-
3-[(2-methoxyanilino)methyl]-1H-quinolin-4-one at a dose of 10 mg/kg, a threefold
decrease in the number of crossed squares (p<0.01) was observed compared to the

intact control (Fig. 2.2). There was also a significant decrease in the number of
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defecations (p<0.05) and, as a result, a twofold decrease in the total sum of all
activities (p<0.01) (Fig. 2.3).
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Fig. 2.2 Effect of VAZ_07 on the number of squares crossed by animals in the
open field test
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Fig. 2.3 Effect of VAZ_07 on the total sum of all animal activities in the open
field test
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However, these changes in locomotor activity and emotional reactions were
not accompanied by impaired research activity. This reflects a certain selectivity of
sedation, which may be a positive feature of this compound. At a dose of 100 mg/kg,
the effect on behavioral reactions was similar, but less pronounced.

According to the results of the conditioned passive avoidance reaction test
against scopolamine-induced amnesia, VAZ 07 only at a dose of 10 mg/kg
significantly showed an anti-amnestic effect, and the anti-amnestic activity was
87.9 % (p<0.05). At a dose of 100 mg/kg, the test substance also had a protective
effect against M-cholinergic blocker administration at the level of 78.7 %, but the
difference with the amnesia control group did not reach a significant level (Fig. 2.4).
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Fig. 2.4 Results of the study of VAZ_07 in the test of passive avoidance

conditioned response against scopolamine-induced amnesia

The anxiolytic properties of VAZ_07 were studied in the elevated plus maze
test (Fig. 2.4). However, no significant differences in the behavior of animals were
found in terms of indicators of anxiety. It should be noted that a significant decrease
in the number of transitions between the maze arms in animals administered
VAZ 07 at a dose of 10 mg/kg (Fig. 2.5) is more in favor of the sedative properties,
which were also found in the open field test.
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Fig. 2.5 Results of the VAZ_07 study in the elevated plus maze test

Animals treated with a dose of 10 mg/kg VAZ 07 made more than 4-times
(p<0.05) fewer transitions between maze compartments compared to mice in the
intact control group, which, when compared with the almost unchanged latency time
of the first pass and the total time spent in the illuminated arms, indicates that the
compound under study has no effect on animal anxiety.

Thus, the results of a comprehensive screening study [74] outlined the
prospects for an in-depth study of VAZ_07 at a dose of 10 mg/kg as a promising

API with sedative and nootropic properties.

2.3 Online computerized metabolism prediction systems used

Xenosite (https://xenosite.org)

XenoSite is a neural network-based CYP SOM prediction model that
improves on RSP in a number of ways [75]. XenoSite uses the sets of substrates and
descriptors generated by RSP as a starting point and makes the following

improvements:
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1. New molecular-level descriptors have been developed that allow machine
learning methods to internally determine which atomic descriptors are most relevant
for a particular substrate in prediction.

2. Neural networks are used to build the models, rather than the SVM
technology used by RSP. One of the advantages of neural networks is that they have
a much faster training model execution time than SVMs. The second advantage is
that their output oxidation probability coefficient has a quantitative expression in a
numerical format that can be interpreted as a probability, unlike RSP SVMs, which
only provide a rank ordering of SOMs contained in the same substrate. The SOM
score obtained from the neural network is significantly correlated with the
probability of SOM oxidation, while the SOM score obtained from the RSP rank
orderings is not. Thus, XenoSite scores serve as a reflection of both the model's
prediction validity and prediction accuracy. This means that consumers can view
SOM scores for an entire substrate and make informed decisions about the reliability
of the prediction [75].

Xenosite utilizes a pre-assembled set of 680 CYP substrates distributed across
nine CYP enzymes: 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4. In
addition, a human liver microsome (HLM) set is analyzed, considering all 680
substrates and all observed metabolites, regardless of metabolizing isoform. This
HLM set does not represent all metabolic functions of liver microsomes, but reflects
the totality of known CYP metabolism [75].

In a molecule, every atom that can be metabolized in a CYP substrate is a
potential SOM. Each atom is associated with a vector of numbers, with each number
encoding the chemical properties of that SOM; these codes of chemical information
are known as descriptors. Machine learning algorithms then analyze these encoded
SOM descriptors to determine a scoring function that gives experimentally observed
CYP-mediated SOMs high scores and unobserved SOMs low scores. A combination
of previously defined descriptors - topological (TOP) and quantum chemical (QC)
descriptors, SMARTCyp reactivity descriptor (SCR) in addition to a refined subset
of QC descriptors (SQC), molecular (MOL) descriptors and fingerprint similarity
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(FP) descriptors - are used. MOL and FP descriptors have recently been used for
SOM prediction and encode information about molecules as a whole in addition to
the local atomic environment [75].

All models are built using a standard neural network with five hidden nodes,
calibrated using cross-validation without outliers (LOQO) with gradient descent on
the cross-entropy error. LOO cross-validation in this case means that all SOMs for
one test substrate are predicted using models calibrated with all SOMs from the rest
of the substrate set. This process is repeated with each substrate that is considered
as a test once. The models created by this protocol produce output scores from 0 to
1, which can be interpreted as probabilities. For each training cycle, three random
re-runs were performed, selecting the model with the best accuracy to the training
set before testing. Unique SOM prediction models were built from each of the 10
sets of SOM substrates represented by the TOP and SCR descriptors in combination
with various combinations of the QC, SQC, MOL, and FP descriptors. XenoSite's
optimal models are on average 87 % accurate for all analyzed substrate sets, a
performance level 3% higher than the previously existing optimal RSP method. This
performance improvement comes from representing the predicted SOMs with two
new molecular-level descriptor classes and pruning the descriptor composition of
the previously developed atomic-level descriptor class to remove noise while
preserving signal; neither of these improvements is responsible for the full increase
in prediction accuracy.

SMARTCyp (https://smartcyp.sund.ku.dk/mol_to_som)

Most of the previously published methods for predicting CYP metabolism
require experimental data to create models. Such data are incomplete because they
always include sites that are "false negatives” (reactive sites for which no
metabolites are found because a metabolite is found for an even more reactive site)
and often include compounds with missing metabolites, leading to significant
"noise" in the training data.

SMARTCyp does not require three-dimensional structures of the molecule,

and although it is supported by experimental data, its implementation is not
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dependent on them [76]. The idea behind SMARTCyp is that the activation energies
of CYPs reacting with ligand fragments calculated by quantum chemical methods
are the best possible reference to the reactivity of a fragment. The reference data
from quantum chemical calculations for substances have a very high signal-to-noise
ratio, as the data are free of experimental errors or so-called "false negatives". The
results are very easy to interpret, as the lower the activation energy, the more likely
the site is to be metabolized.

Atoms that do not match any pattern are not considered reactive. The
accessibility descriptor, A, is the coefficient of the SPAN descriptor as defined by
Sheridan et al. It is defined as the longest bonding distance from a given atom
divided by the longest bonding distance in the entire molecule. It is a measure of
how far from the 2D center of the molecule an atom is located and is always a
number between 0.5 and 1. So, it is not a measure of available surface area, but it
describes how the atoms at the end of the molecule are likely to get close to the
reactive heme group in the active center of CYP. Finally, the S score is calculated
for each atom as S = E-8A, where a lower score indicates a higher probability of
being a SOM. The constant 8 is chosen so that availability can change the score,
corresponding to a maximum energy of 4 kJ/mol (which is slightly higher than the
average standard deviation among the calculated energies using our rules, which is
3.2 kJ/mol). This allows somewhat less reactive atoms to be scored higher if their
availability A is significantly higher [76].

The development of SMARTS rules is based on a dataset of 475 cytochrome
P450 substrates from the literature. Procedures for determining activation energies
within the framework of density functional theory (DFT), energy differences
between the transition state and the reagent complex have already been described.
While the original SMARTCyp program is based on Java using the Chemistry
Development Kit (CDK) library, SMARTCyp 3.0 is based on Python using the
RDKit library. CDK and RDK:it perceive aromaticity in a molecule's structure
differently, and thus there is a difference in which atoms SMARTS models match,

for example, due to a different set of atoms. To ensure backward compatibility, the
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differences in SMARTS rules were identified by CDK and RDK:it for all sites for
the test set of 475 3A4 substrates. Each SMARTS rule with a discrepancy was
analyzed individually, compared to the corresponding molecule and substructure
from which it was generated, and corrected as necessary [76].

The calculated different sites can be divided into six different types, which
represent one or more types of P450 reactions. The distribution of activation energies
varies quite a bit between the different types, with phosphorus desulfurization and
S-oxidation yielding the lowest energies and N-oxidation and N-dealkylation of
peptide groups yielding the highest energies. To obtain the activation energies, the
reaction step with the highest activation energy in the respective reactions is
calculated. For aliphatic hydroxylation, aldehyde hydroxylation, and dealkylation
reactions, this is the abstraction of hydrogen from a carbon atom, while for other
reaction types it is the attack of oxygen on the corresponding atom.

One of the new features implemented in SMARTCyp 3.0 is the "Similarity"
function, which compares the similarity of the matched substructure to the full
molecule fragment for which the DFT calculation was performed based on Morgan
fingerprints. A score of "1.0" indicates a perfect match, while a score of "0.0" means
that there is no matching fragment, which means that the atom is either not
considered reactive or the assigned reactivity is not based on calculated data and
therefore not as reliable [76].

The fact that SMART Cyp performs quite well shows that reactivity is a major
factor in CYP 3A4 metabolism and emphasizes the importance of using accurate
methods to generate reactivity rules. SMARTCyp is good at detecting compounds
with a metabolic position that ranks highest, in part because it is a pure 2D method
that gives extremely fast predictions. The two main advantages of the method are
that the creation of the method makes physical sense and the low signal-to-noise
ratio in the input data. Both of these stem from the fact that the reactivity model is
calculated based on highly skilled quantum chemical calculations of the activation
energy for oxidation reactions. Other methods often use a larger number of

descriptors, which leads to a significant amount of noise in the input data, and the
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relative influence of descriptors is often difficult to understand. Another advantage
of the method is that it is easy to implement using any of the available chemical
programming libraries, free or commercial, and can be integrated into workflows
used by other software.

Way2Drug SOMP/RA (http://www.way2drug.com/RA)

To determine the SOM, machine learning approaches must take into account
the basic mechanisms of enzyme action. However, such information is not always
available, and the results of SOM predictions can be properly interpreted to
understand the structure of reaction products. For example, in many cases,
researchers prefer to consider the carbon atom of the leaving group adjacent to the
nitrogen as the SOM for N-dealkylation. This assumption is based on the mechanism
of abstraction of the hydrogen atom, but does not take into account other possible
one-electron transfer mechanisms of the N-dealkylation reaction [77]. We consider
nitrogen as a "'reacting atom" in the case of the N-dealkylation reaction. Another
problem with the uncertainty of detecting the site of the molecule attacked by
cytochromes P450 is related to the mechanism of aromatic hydroxylation, which can
be realized by the formation of an epoxy intermediate or "NIH shift". Therefore, the
direct determination of SOMs to create training sets in machine learning approaches
is problematic, and the interpretation of the predicted results is ambiguous.

In the Way2Drug approach, SOMP and RA [77] do not attempt to model or
simulate the hypothetical process of intermediate formation implemented by P450.
Only known information about the substrate and metabolite structures of the
reactions is used to create training sets for predicting the reacting atoms of nine
classes of reactions. The Way2Drug SOMP and RA approach considers the reaction
classes of aliphatic and aromatic hydroxylation, N-, S-, and C-oxidation, N- and O-
dealkylation, which, according to the Biovia Metabolite database, cover
approximately 70 % of all reactions catalyzed by the five major P450 isoenzymes
(CYP1A2, CYP3A4, CYP2D6, CYP2C9, CYP2C19). In addition, the reactions of
N- and O-glucuronidation are discussed, which cover almost all reactions catalyzed

by the UDP-glucuronyltransferase family.
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The use of the term "reactive atom™ and its definition as the portion of the
substrate molecule to which a specific structural fragment is added (or removed)
allows the identification of metabolite structures based on the prediction of the
reactive atom. Structural fragments added to reactive atoms include hydroxyl
(hydroxylation reactions), carbonyl or carboxyl (C oxidation reactions), hydroxyl or
oxo groups (N- and S-oxidation reactions), and glucuronyl (glucuronidation
reactions) groups. In the case of dealkylation reactions, the alkyl group is considered
as a fragment that is removed from the reacting atom represented by an oxygen or
nitrogen [77].

In the Way2Drug SOMP and RA approach, the reacting atoms are
automatically identified in each substrate structure from selected biotransformations.
The APGL and python-igraph libraries are used to automatically identify the
reacting atoms. First, all subisomorphisms between substrate and product are
detected. Then the algorithm checks whether the graphical difference in the
structures of the substrate and the reaction product is related to the process under
study. If so, it looks for atoms with a changed number of neighbors in the isomorphic
environment. Oxidation reactions are catalyzed by cytochromes P450 and are mainly
realized by oxidation by heteroatoms (N- and S-oxidation) or hydroxylation of
carbon (aliphatic or aromatic hydroxylation). The aliphatic hydroxylation reaction
is understood as the hydroxylation of a carbon atom that is not part of the aromatic
rings. In the case of C oxidation reactions, the formation of carbonyl or carboxyl
groups is considered. N- and O-glucuronidation is catalyzed by UDP-
glucuronosyltransferases.

Biotransformer (http://biotransformer.ca)

BioTransformer is an open-source software tool and a freely available web
service for accurate and comprehensive in silico metabolism prediction and
metabolite identification [78].

BioTransformer consists of a metabolism prediction tool (BMPT) and a
metabolite identification tool (BMIT). BMPT consists of five independent

prediction modules called "transformers”, namely:
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1) an enzyme-directed transformer;

2) CYP450 transformer (phase I);

3) phase Il transformer;

4) transformer of human intestinal microbiota;

5) microbial environment transformer.

For metabolite prediction, BioTransformer uses two approaches - a rule-based
or knowledge-based approach and a machine learning approach. The knowledge-
based system in BioTransformer consists of three main components: (1) a
biotransformation database (called MetXBioDB) containing detailed annotations of
experimentally validated metabolic reactions, (2) a reaction knowledge base
containing general biotransformation rules, preference rules, and other constraints
for metabolite prediction, and (3) a selection engine that implements both general
and transformer-specific algorithms for metabolite prediction and selection. BMPT's
machine learning system uses a set of random forest and ensemble prediction models
to predict CYP450 substrate selectivity and to filter out phase Il molecules. The
BioTransformer metabolite identification tool relies on BMPT to identify specific
metabolites using mass spectrometry (MS) data, namely precise mass or chemical
formula information [78].

MetXBioDB is a database consisting of a collection of more than 2000
experimentally validated biotransformations derived from the literature. It was
developed to assist in (1) developing biotransformation rules, (2) training and
validating machine learning metabolism prediction models, and (3) developing
preference rules. Each biotransformation in MetXBioDB includes a starting reagent
(structure and identifiers), a reaction product (structure and identifiers), the name or
type of enzyme catalyzing the biotransformation, a reaction type, and one or more
citations. For the purposes of this article, a reagent is defined as a small molecule
that binds to a specific enzyme and undergoes a metabolic transformation catalyzed
by that enzyme. Biotransformation describes the chemical conversion or molecular
transformation of a reactant into one or more products by a specific enzyme (or class

of enzymes) through a specific chemical reaction. Cytochrome P450 enzymes
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(CYP450s) are responsible for >90% of phase | oxidative reactions and >75% of
drug  metabolism, while  UDP-glucuronosyltransferases (UGTs) and
sulfotransferases (SULTSs) are responsible for phase Il metabolism of most
xenobiotics [49]. In the gut microbiota, enzymatic reactions are mostly reductive
and are carried out by anaerobic bacteria due to the very low oxygen concentration.

The BioTransformer Reaction Knowledge Base contains chemical reaction
descriptions and rules encoded in SMARTS and SMIRKS strings that are used by
the selection engine to predict biotransformation. This knowledge base encodes
information about five different concepts and contains data representing: (1)
biosystem, (2) metabolic enzyme, (3) metabolic reaction, (4) metabolic pathway,
and (5) chemical class.

The BMPT reasoning system uses rules in the reaction knowledge base to
select the most likely of all applicable metabolic biotransformations or pathways. In
general, two types of considerations are used to select and rank predicted
metabolites: absolute and relative [49]. Absolute considerations focus exclusively
on the probability of biotransformation and are used to select biotransformations
with an occurrence rate above a given threshold.

GLORYx (https://nerdd.zbh.uni-hamburg.de)

GLORY includes a new set of reaction rules for CYP-mediated metabolism,
which distinguishes common reaction types from more unusual reactions [79].
Importantly, GLORY investigated how SoM prediction can be effectively used in
the context of metabolite structure prediction.

The SoM prediction software used in GLORY was FAME 2, a machine
learning-based SoM prediction program that uses highly randomized tree classifiers
combined with two-dimensional (2D) circular descriptors to predict SoMs for CYP-
mediated metabolism. Since the development of GLORY, a successor to FAME 2
has become available. FAME 3 continues to utilize the concept of additional tree
classifiers and 2D circular descriptors developed in FAME 2 and applies this
approach to create comprehensive SoM prediction models for both phase 1 and

phase 2 metabolism.
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Based on the extended approach developed in GLORY, a new tool called
GLORYX has been created that combines SoM prediction with a set of reaction rules
to predict metabolites from both phase 1 and phase 2 metabolism. GLORYX uses
FAME 3 to perform SoM prediction, the results of which are used to score and rank
the predicted metabolites. Compared to GLORY, GLORYx requires a larger number
of reaction rules to cover non-CYP phase 1 metabolic reactions as well as phase 2
metabolic reactions. GLORYXx is freely available via a web server at
https://nerdd.zbh.uni-hamburg.de/.

A reference dataset of combined metabolite pairs was compiled from freely
available metabolism data in the DrugBank (drug group "All") and MetXBioDB
databases to serve as a basis for method evaluation during GLORYX development.
For each metabolic reaction in either database, the reactant was considered the
starting molecule and the product was considered the metabolite. Thus, the reference
dataset is presented in the format of a map of each parent molecule to its first-
generation metabolites, regardless of whether the parent molecule is itself a
metabolite of another molecule.

GLORYX applies the reaction rules to all relevant positions in the molecule,
which is determined by where each SMIRKS reaction rule matches, if at all. Within
the program, the main parameters are predicted using FAME 3, and the predicted
probabilities are used to score and rank the predicted metabolites. The software is
written in Java and uses CDK version 2.0. GLORYXx performs an initial
preprocessing step on all input molecules to check that the input molecule can be
successfully analyzed by the CDK, does not have multiple components, and does
not contain element types other than C, N, S, O, H, F, Cl, Br, I, P, B, and Si (allowed
FAME 3 element types). If any of these checks fail, no predictions are made for the
input molecule [79].

SoM prediction in GLORYX is performed using FAME 3. FAME 3 is trained
on SoM data from the MetaQSAR database and offers three SoM prediction models:

1) model P1 predicts SoMs corresponding to phase 1 metabolic reactions;

2) the P2 model predicts SoMs corresponding to phase 2 metabolic reactions;
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3) the P1 + P2 model predicts SoMs corresponding to both phases of
metabolism.

The FAME 3 code includes preprocessing of the input molecules, including
nitro group standardization, aromaticity detection, and automatic hydrogen addition
if the hydrogen of the input molecule is not explicitly specified. Since the SoM
prediction step occurs before the application of reaction rules within the GLORYX
program, the standardization of the molecules described here remains in place for
the next transformation step.

The reaction rules are applied using Ambit-SMIRKS. For GLORY, any
product containing less than three heavy atoms is not included in the set of predicted
metabolites. In order to apply the reaction rules correctly, i.e. to achieve the same
predicted metabolites as SyGMa using the same rules, it was necessary to use an
aromaticity model that could recognize aromaticity in rings with exocyclic
heteroatoms.

In GLORYX, a weighting factor of 1 is used for reaction rules labeled as
"common" and a weighting factor of 0.2 is used for reaction rules labeled as
"unusual”. Thus, these weights maintain the same 5:1 ratio, but are scaled so that the
final priority score is more reflective of the probabilistic concept, with values
ranging from O to 1.

Conclusions to the Chapter 2

1. The methods for the synthesis of 2-methyl-3-[(2-methoxyanilino)methyl]-
1H-quinoline-4-one (laboratory code VAZ _0Q7) are presented.

2. The prospects for in-depth pharmacological study of 2-methyl-3-[(2-
methoxyanilino)methyl]-1H-quinoline-4-one as a potential API with sedative and
nootropic effects are substantiated.

3. The choice and analysis of the calculation algorithms used in the work of
online computer prediction systems for possible metabolic pathways in the human

body was substantiated.
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CHAPTER 3. PREDICTION OF PROBABLE METABOLIC PATHWAYS
OF 2-METHYL-3-[(2-METHOXYANILINO)METHYL]-1H-QUINOLINE-4-
ONE

In order to predict the possible pathways of biotransformation of a promising
compound — 2-methyl-3-[(2-methoxyanilino)methyl]-1H-quinolin-4-one
(laboratory code VAZ_07), five different online resources that are freely available
were used, namely:

1) Xenosite (https://xenosite.org/)

2) SMARTCyp (https://smartcyp.sund.ku.dk/mol_to_som)

3) Way2Drug RA (http://www.way2drug.com/RA)

4) Biotransformer 3.0 (http://biotransformer.ca)

5) GLORYX (https://nerdd.zbh.uni-hamburg.de)

According to the results of prediction of possible pathways of VAZ 07
metabolism using the online service Xenosite, the most likely direction is unstable
oxidation, i.e. O-demethylation with the formation of the corresponding 4'-hydroxy
derivative. Oxidative deamination of the amino methyl fragment at position 3 of the
quinolone ring is also possible by the classical mechanism, i.e. formation of the
corresponding aldehyde and amine. Stable oxidation, i.e., aromatic or aliphatic
hydroxylation, is also a possible direction of biotransformation of the molecule
(Fig. 3.1).

According to the prediction results, the methyl group at position 2 of the
quinolone cycle is the most reactive. In such a scenario, as a result of further
oxidation of the hydroxymethyl group to the carboxyl group, the generation of
metabolites with new pharmacological properties — kynurenic acid derivatives — is
predicted. Kynurenic acid (4-hydroxyquinoline-2-carboxylic acid) is a tryptophan
metabolite and is formed from kynurenine under the action of kynurenine

aminotransferase [80].



hydrolysis reduction

Fig. 3.1 Results of prediction of possible metabolic pathways of VAZ_07 using the online service Xenosite
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In the brain, kynurenic acid acts as an endogenous antagonist of the glycine site
of NMDAR, which determines the interest in kynurenic acid as a potential
pharmacocorrector of pathological conditions accompanied and burdened by
excitotoxicity. A significant problem in in vivo studies was the low permeability of
this molecule through the blood-brain barrier [80], so researchers focused on its
chemical modification to find kynurenic acid derivatives with physicochemical
properties that can overcome this limitation.

Thus, the results of the calculations indicate that some of the effects of VAZ 07
pharmacodynamics, in particular its anti-amnesic properties, may be related not only
to the direct action of the compound on certain receptor systems in the brain, but also
to active metabolites formed as a result of biotransformation.

In addition to predicting the possible directions of biotransformation of
molecules within the first phase of metabolism, the Xenosite software package
allows to assess the safety of a promising compound in terms of reactivity, as well
as the possibility of formation of toxic metabolites.

According to the results of the prediction, VAZ_07 has low probability of

formation of quinones or epoxides (Fig. 3.2).

COcTccecccTNCC2=C(C)Nc3cccec3C2=0

Quinonation v Epoxidation ¥

Fig. 3.2 Results of prediction of the possibility of formation of highly reactive
quinones and epoxides as metabolites of VAZ_07 (online service Xenosite)
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Fig. 3.3 Results of predicting the reactivity of VAZ_07 in the human body using the online service Xenosite
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Fig. 3.3 shows the results of predicting the reactivity of the test molecule, i.e.,
the potential interaction with certain structures in the human body. It is shown that
VAZ_07 has low indicators of potential interaction with the reduced glutathione
system, proteins, and low potential for cyanide formation. Nevertheless, there is a
certain probability of interaction with DNA material, which is unlikely to occur in
vivo, since it is unlikely that this molecule will be able to penetrate directly into the
cell nucleus, at least in unchanged form.

The analysis of the prediction results using the online SMARTCyp system
showed that different CYP isoforms can catalyze oxidation processes, namely
O-demethylation, oxidative deamination and aromatic hydroxylation at different
positions (Figs. 3.4, 3.5 and 3.6).

With the participation of the CYP3A4 isoform, the most likely directions of
biotransformation of VAZ 07 are oxidative deamination of the aminomethyl
fragment at position 3 of the quinolone ring and O-demethylation, aromatic
hydroxylation of the para- and ortho-positions of the phenyl substituent and
aliphatic hydroxylation of the methyl group at position 2 of the heterocycle
(Fig. 3.4).
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Fig. 3.4 Results of predicting possible pathways of VAZ 07 metabolism
involving CYP3A4 (SMARTCyp software package)
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Fig. 3.5 Results of predicting possible pathways of VAZ 07 metabolism
involving CYP2C9 (SMARTCyp software package)
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If oxidative deamination predictably leads to a complete loss of the original
molecular architecture, O-demethylation does not significantly affect the activity
profile and can be considered as an intermediate step, aromatic hydroxylation is also
unlikely to be interesting in terms of pharmacological activity of metabolites, then
aliphatic hydroxylation of the methyl group again opens the prospect of further
oxidation to biologically active kynurenic acid derivatives.

The results of predicting the possible pathways of VAZ 07 metabolism
involving CYP2C9 and CYP2D6 indicate mainly the same directions as those
involving CYP3A4 (Figs. 3.5 and 3.6).

It should be noted that the results of predicting the directions of
biotransformation of VAZ_07 using different systems with different algorithms
largely coincide or correlate well with each other.

Fig. 3.7 shows a fragment of the protocol for predicting possible pathways of
VAZ_07 metabolism using the online Biotransformer system. In total, the system
calculated the possibility of formation of 11 different metabolites, the vast majority
of which are products of aromatic hydroxylation at different positions of both the
quinolone heterocyclic system and the phenyl substituent. This is quite predictable
given the biochemical nature of the processes catalyzed by CYP enzymes. One of
the possible directions is also the O-demethylation of the methoxyl substituent in the
para-position of the phenyl substituent of the aminomethyl fragment. Among the
predicted metabolites is also a 2-hydroxymethyl derivative, which is a product of
aliphatic hydroxylation of a reactive methyl group at position 2 of the quinolone
ring. Also, some of the predicted metabolites indicate the possibility of oxidative
deamination. Thus, it can be stated that the main directions of biotransformation
predicted by the Biotransformer system completely coincide with the results of

previous programs, despite the differences in calculation algorithms.
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The analysis of the predicted metabolites of VAZ 07 using the GLORYX
online system confirms that the main pathways of metabolic transformations of the
studied molecule are O-demethylation (which begins with hydroxylation of the
corresponding methoxyl group), aromatic hydroxylation, oxidative deamination of
the amino methyl fragment at position 3 and oxidation of the methyl group at

position 2 of the quinolone ring (Fig. 3.8).
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Fig. 3.8 Results of predicting possible metabolic pathways of VAZ 07 using
the online GLORYXx system

One of the most informative is the forecasting results using the online service
Way2Drug RA, which are graphically represented in Fig. 3.9. This software product
provides only indicators of the probability of a particular process, so visualization
of the results requires a certain expert understanding of the nature of
biotransformation changes to extrapolate specific processes that may occur with

respect to the compound under study.
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The prediction results are shown in Fig. 3.9, and the main pathways predicted
are the variants of aromatic hydroxylation involving carbon atoms at positions 6, 7,
and 8 of the quinolone heterocyclic system as well as para-position of the phenyl
substituent. The most reactive in terms of aromatic hydroxylation is position 6 of the
quinolin-4-one system (Fig. 3.9). It should be noted that according to the forecast of
the Way2Drug RA program, the directions of O-demethylation and N-dealkylation
also have a high probability. In addition, in addition to the reactions of the first phase
of metabolism, this system suggests the processes of the synthetic phase —
conjugation with glucuronic acid at the nitrogen atom of the aminomethyl fragment
and with glutathione with the participation of ortho-positions to the methoxyl group
in the phenyl substituent.

Special attention should be paid to the GLORYx module of the system, which
allows predicting the substrate specificity of a compound to certain CYP isoforms
(Fig. 3.10).

2D structure CYP1A2 CYP2A6 CYP2B6 cyp2cs CYP2C9 CYP2C19 CYP2D6 CYP2E1 CYP3A4

o]
NH \
Non- No Non- No No Non- No
\ substrate | prediction | substrate | prediction | prediction substrate | prediction

Fig. 3.10 Substrate specificity of VAZ 07 to cytochrome P450 isoforms

according to the results of the online GLORYX system

Such an assessment makes it possible to predict possible metabolic
interactions of a substance with known cytochrome substrates at the early stages of
research on promising molecules when used simultaneously. As can be seen from
Fig. 3.10, VAZ_07 is highly likely to be metabolized by cytochromes CYP1A2 and
CYP2D6.

Thus, a comprehensive analysis of the results of predicting the possible
pathways of VAZ_07 metabolism using five different online systems allows us to
conclude that the molecule 2-methyl-3-[(2-methoxyanilino)methyl]-1H-quinolin-4-

one can be intensively metabolized with the participation of cytochrome P450
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enzyme systems. The main directions are aromatic hydroxylation of the test
substance molecule with the participation of carbon atoms of the quinolone
heterocyclic system, O-demethylation of the methoxy group, N-dealkylation of the
amino methyl fragment. In this case, the predicted metabolites are unlikely to
significantly affect the overall pharmacological activity profile of the parent
molecule. However, the possible directions of aliphatic hydroxylation at the methyl
group at position 2 of the heterocycle to kynurenic acid derivatives suggest that the
proven pharmacodynamic effects of VAZ_07, namely nootropic and sedative, may
be at least partially provided by these pharmacologically active metabolites.

The general regularities of biotransformation transformations of 2-methyl-3-
[(2-methoxyanilino)methyl]-1H-quinolin-4-one completely coincide and are fully
consistent with the current views of medicinal chemistry on the reactivity of
xenobiotics under the influence of cytochrome P450 enzyme systems in the human
body. The results obtained using different systems differ somewhat, which is fully
explained by the difference in the calculation algorithms underlying the software

products.

Conclusions to the Chapter 3

1. A computer prediction of possible pathways of biotransformation of a
promising compound - 2-methyl-3-[(2-methoxyanilino)methyl]-1H-quinolin-4-one
(laboratory code VAZ_07) was performed using five different online resources that
are freely available.

2. The results obtained indicate that the molecule 2-methyl-3-[(2-methoxy-
anilino)methyl]-1H-quinoline-4-one in the human body can be intensively
metabolized with the participation of cytochrome P450 enzyme systems.

3. The most probable pathways of metabolism of the test compound are
aromatic hydroxylation of the test substance molecule with the participation of
carbon atoms of both the quinolone heterocyclic system and the phenyl substituent,
O-demethylation of the methoxyl group, N-dealkylation of the amino methyl

fragment.
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4. The predicted direction of aliphatic hydroxylation at the methyl group at
position 2 of the heterocycle to kynurenic acid derivatives suggests that the proven
pharmacodynamic effects of VAZ 07 may be partially provided by these
pharmacologically active metabolites.

5. According to the results of the GLORYXx system module, which allows
predicting the substrate specificity of a compound to certain CYP isoforms, the
investigated compound is most likely to be metabolized by cytochromes CYP1A2
and CYP2D6.

6. According to the results of the Xenosite program, 2-methyl-3-[(2-methoxy-
anilino)methyl]-1H-quinolin-4-one has low potential interaction with the reduced
glutathione system, proteins and low potential for the formation of cyanides,
quinones or epoxides, However, there is a certain probability of interaction with cell
DNA.
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GENERAL CONCLUSIONS

1. The article systematizes and analyzes the current scientific literature on
the main in vitro and in silico methods used to predict possible pathways of chemical
metabolism in the human body. The analysis confirms the prospects of using the
software to predict possible metabolites of a potential drug at the early stages of its
development.

2. The methods for the synthesis of 2-methyl-3-[(2-methoxyanilino)methyl]-
1H-quinolin-4-one (laboratory code VAZ_07) are presented. The prospects of in-
depth pharmacological study of VAZ 07 as a potential APl with sedative and
nootropic properties are substantiated. The choice and analysis of the calculation
algorithms used in the work of online computer prediction systems for possible
metabolic pathways in the human body was substantiated.

3. The computer prediction of possible pathways of biotransformation of a
promising compound with sedative and nootropic action — 2-methyl-3-[(2-methoxy-
anilino)methyl]-1H-quinolin-4-one (laboratory code VAZ _07) using five different
online resources that are freely available.

4. The most probable pathways of the metabolism of the test compound are
aromatic hydroxylation of the test substance molecule with the participation of
carbon atoms of both the quinolone heterocyclic system and the phenyl substituent,
O-demethylation of the methoxyl group, N-dealkylation of the amino methyl
fragment. Predicted directions of aliphatic hydroxylation at the methyl group at
position 2 of the heterocycle to kynurenic acid derivatives support the assumption
that the proven pharmacodynamic effects of VAZ_07 may be partially provided by
these pharmacologically active metabolites.

5. According to the results of the GLORYx system module, which allows
predicting the substrate specificity of a compound to certain CYP isoforms, the
tested compound is most likely metabolized by cytochromes CYP1A2 and CYP2D6.

6. According to the results of the Xenosite program, 2-methyl-3-[(2-
methoxyanilino)methyl]-1H-quinolin-4-one has low potential interaction with the
reduced glutathione system, proteins and low potential for the formation of cyanides,
quinones or epoxides, however, there is a certain probability of interaction with cell
DNA.
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sedative and nootropic effects»

Relevance of the topic. To reduce the risk of withdrawal of drug candidates at the
clinical trial stage due to unfavorable metabolic characteristics of molecules,
effective and reliable methods of predicting the metabolism of a biologically active
compound in silico, in vitro, and in vivo are needed. Experimental studies of possible
pathways of biotransformation of new molecules in vitro and in vivo are always non-
trivial and resource-intensive tasks. That is why the use of computer prediction of
possible metabolic pathways of a potential drug candidate at the initial stages is a
fully justified and effective approach that allows identifying metabolic sites, predict
the structures of the formed metabolites, metabolic rate, and specificity of substrates
to cytochrome P450 enzymes. The chosen topic of the qualification work is aimed
at solving these issues, which determines its relevance.

Practical value of conclusions, recommendations and their validity. The
obtained results of the study expand the knowledge of possible metabolic pathways
of 2-methyl-3-[(2-methoxyanilino)methyl]-1H-quinolin-4-one, a substance that is a
promising APl with sedative and nootropic properties. The results obtained can
significantly expand and deepen the understanding of both pharmacodynamic and
pharmacokinetic features of the promising API candidate, subject to further in-depth
pharmacological research and the introduction of the compound into medical
practice.

Assessment of work. The qualification work has a classical structure: an
introduction, 3 chapters (literature review and 2 chapters of experimental research),

conclusions and a list of references. The work thoroughly substantiates the relevance



of the topic, describes in detail the materials and research methods, consistently
presents the results of computer forecasting, conducts a thorough analysis of the
results, and logically formulates conclusions. The research is performed at a modern
and high level, and the conclusions drawn are not in doubt.

General conclusion and recommendations on admission to defend. The
qualification work of Abdelilah ELHARRAB meets the requirements for
qualification works in terms of the relevance and scope of the performed research,
the novelty of the obtained results, their theoretical and practical significance and

can be recommended for defense at the Examination Commission.

Scientific supervisor Illya PODOLSKY

«7"» of April 2023
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sedative and nootropic effects »

Relevance of the topic. properties, 2-methyl-3-[(2-methoxyanilino)methyl]-1H-
quinolin-4-one. During metabolic transformations of biologically active molecules
in the human body, metabolites with physicochemical and pharmacological
properties that differ significantly from those of the parent compounds may be
produced, which is important both in terms of efficacy and safety of medicines.
Experimental studies of possible pathways of biotransformation of new molecules
in vitro and in vivo are always non-trivial and resource-intensive tasks. That is why
the use of computer prediction of possible metabolic pathways of a potential drug
candidate at the initial stages is a fully justified and effective approach that allows
identifying metabolic sites, predict the structures of the formed metabolites,
metabolic rate, and specificity of substrates to cytochrome P450 enzymes. Such
studies are of particular importance at the early stages of studying the properties of
an API candidate in order to reduce the risk of withdrawal of drug candidate
compounds at the stage of clinical trials due to the metabolic characteristics of the
molecules. The chosen topic of the qualification work is aimed at addressing such
issues, which determines its relevance.

Theoretical level of work. The qualification work was performed at a high
theoretical level, since its results, in addition to their practical significance, have
significant methodological potential. The methodological approach to predicting
possible pathways of xenobiotics metabolism in the human body using various
algorithms developed in the course of the work should be recommended for use by
scientists in their applied research.

Author's suggestions on the research topic. The results obtained by the author
indicate that the molecule 2-methyl-3-[(2-methoxyanilino)methyl]-1H-quinolin-4-



one can be intensively metabolized by cytochrome P450 enzyme systems. The most
likely pathways of metabolism of the compound under study are aromatic
hydroxylation involving carbon atoms of both the quinolone heterocyclic system and
the phenyl fragment. The predicted direction of aliphatic hydroxylation at the methyl
group at position 2 of the heterocycle to kynurenic acid derivatives suggests that the
proven pharmacodynamic effects of 2-methyl-3-[(2-methoxyanilino)methyl]-1H-
quinolin-4-one may be partially provided by these pharmacologically active
metabolites.

Practical value of conclusions, recommendations and their validity. The
obtained results of the study expand the knowledge of possible metabolic pathways
of 2-methyl-3-[(2-methoxyanilino)methyl]-1H-quinolin-4-one, a substance that is a
promising compound with sedative and nootropic properties. The results obtained
can significantly expand and deepen the understanding of both pharmacodynamic
and pharmacokinetic features of a promising candidate for APIs, subject to further
in-depth pharmacological research and implementation of the compound in medical
practice. The conclusions are logically formulated on the basis of the data obtained
and do not raise any doubts.

Disadvantages of work. The qualification paper contains grammatical errors,
incorrect hyphenations of chemical names, and some mistakes in the formatting of
references, but they are minor and do not reduce the overall value of the paper.
General conclusion and assessment of the work. The qualification work of
Abdelilah ELHARRAB in terms of relevance, scientific novelty of the obtained
results, methodological level, theoretical and practical significance, volume of
performed research meets the requirements of the Regulation on the Procedure for
the Preparation and Defense of Qualification Works at the National Pharmaceutical
University and can be recommended for defense at the Examination Commission.

Reviewer prof. Serhiy VLASOV

«14™y of April 2023
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BUTAT
3 IPOTOKOJIY 3acifaHHA Kadeapn MeIMYHOI XiMil
Ne 10 Bix 21 kBiTHsa 2023 p.

MHNPUCYTHI:

npod. Jlina IIEPEXOJIA, npod. Auapiit ®PEJIOCOB, nou. Bagum 3YBKOB,
non. Ipupa CHUY, nou. Bitamiit APEMEHKO, nom. Ims HOI[OJII)CLKI/Iﬁ,
nou. Hatamis  KOB3AP, nmon. Mapuna PAXIMOBA, gou. Maprapura
CYJIEMUMAH, ac. Onena BEB3, ac. Omsra BICJIOYC

MOPSIJOK JEHHUM:

3BIT NpO CTaH BUKOHAHHS KBamidikaiiitHoi poboTu 3100yBaya BUIIOI OCBITH
dakynpTeTy 3 MATOTOBKH 1HO3eMHHX TrpoMansin DOm18(5,0m)anrn-02 rpymu,
creriagbHOCTI «226 dapwmaiiisi, MpoMHCIOBa (apmallis», OCBITHBOI MporpamMu
«®apmanis» Adneninaxa EJIBI’APPABA nHa temy: «lIporao3yBaHHs KIMOBIpHHX
NUIAXiB MeTaboni3My moteHIiitHoro A®I cematuBHOI Ta HOOTpOmHOI mii /
Prediction of possible metabolic pathways of potential APl with sedative and
nootropic effects»

CJHIYXAJIU: nomnoBias 3700yBaya BUIIOI OCBITH (PaKyJIbTETy 3 MiATOTOBKU
1Ho3eMHMX TpoMmajsiH Om18(5,0m)anrn-02 rpymnu, cnemianbHOCTI «226 dapmartis,
npoMmucioBa (apmauisi», OCBITHbOiI mporpamu «Dapmauis»  Adnpeninaxa
EJIbI’APPABA Ha Ttemy: «lIporHo3yBaHHs HMOBIpHUX ULUISIXIB MeETab0MI3My
pathways of potential API with sedative and nootropic effects», kepiBHUK — JOLIEHT

3aKiaay BUIIOI OCBITU Kadeapu MeaudHoi ximii, a.¢apMm.H., AoueHT DLmis
[1OJOJIbCHKUIA.

YXBAJIMJIM:  pexkomenayBatu  kBamidikamiiny — pobdoty  Pemm
BEHOTMAHA no odiuiitHoro 3axucty B Ex3ameHariiiHiii Komicii.

3aBigyBauka kaeapu MeAU4IHOI XiMmil,
npodecop Jlina IIEPEXOJIA

Cexperap kadeapu MeIAU4HOI XiMil,
JOIEHT Mapuna PAXIMOBA
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HAIIOHAJIbHUN ®APMAIIEBTUYHUIN YHIBEPCUTET

INHOJAHHAA

Tr'OJIOBI EK3AMEHAIIIAHOI KOMICIH
OJ10 3AXHUCTY KBAJII®IKAILIMHOI POBOTH

HampaBnserscs 3m00yBau  Bumoi ocBitm  AOnenimax EJIBI’APPAB  nmo 3axwmcry
KBaJiQikaniitHoi podoTH
3a rajy3310 3HaHb 22 OX0opoHa 3/10pOB’s
cremianabHicTIO 226 DapMmariis, mpoMucioBa Gapmaiist
OCBITHBOIO ITporpamoro Papmartis
Ha TeMy: «[IporHo3yBaHHsS WMOBIpHHX NUISIXiB MeTabomi3mMy noreHmiHoro APl cenatuBHOi Ta
HOOTPOIHOI Aii».

Ksamigikariiina podoTa i pereHsist 101at0ThCs.

JlexkaH (akyybTeTy / Ceitnana KAJTAVIYEBA /

BucHoBoOK KepiBHMKa KBaJi(ikaniiHoI podoTH
3no0yBau Bumoi oceith Aobnenuiax EJIBI'APPAB y mnoBHoMy 00cs31 BHKOHaB
KBaJiQikamiiiHy poOoTy. 3a akTyaJIbHICTIO, METOAUYHUM PIBHEM, TEOPETUYHUM Ta MPAKTUYHUM

3HaueHHSAM, 00’€MOM BHKOHAHMX JOCIIIKEHb KBanlidikaiiiiHa poOoTa BIANOBIJAE BUMOTaM 1
JIOITyCKa€eThes 10 3axucTy B Ex3aMeHartiinii komicii.

KepiBHuk kBanidikauiitHoi podoTn

Lt TIOJIOJIBCBKUIA

«07» xBitH 2023 p.

BucnoBok kageapu npo kBaiidikaniiiny podory

Kgamnidikariiiny po6oty posrisHyTo. 3mo00yBau Bumioi ocBitu AoOaeninax EJIBI'APPAB
JOTYCKAETHCS 0 3aXUCTY JaHOi KBami(ikaiiiHoi poooTu B Ex3ameHartiiiHii Komicii.

3aBingyBauka Kadenpu
MEIUYHOI XiMiT

Jlina [IEPEXOIA

«21» xBitHa 2023 p.
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