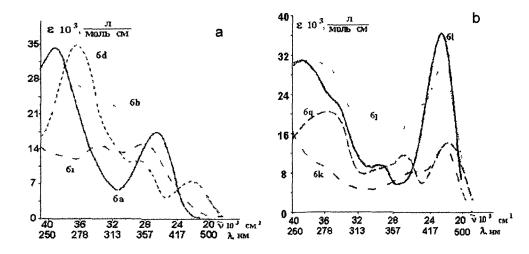
Н. Ю. Горобец, А. В. Борисов, А. В. Силин, В. М. Никитченко, С. Н. Коваленко^а

3-(4-АРИЛТИАЗОЛИЛ-2)- И 3-(БЕНЗОТИАЗОЛИЛ-2)-2-ИМИНОКУМАРИНЫ В РЕАКЦИЯХ С N-НУКЛЕОФИЛАМИ

Изучено взаимодействие 3-(4-арилтиазолил-2)- и 3-(бензотиазолил-2)-2-иминокумаринов с N-нуклеофилами. Установлено, что в результате реакции образуются 2-N-замещенные 3-(4-арилтиазолил-2)- и 3-(бензотиазолил-2)-2-иминокумарины. Показано, что в реакцию вступают такие N-нуклеофилы как ариламины различной основности, гетероциклические амины, производные гидразина и др.

Ключевые слова: 3-(4-арилтиазолил-2)-3-иминокумарины, 3-(бензотиазолил-2)-2-иминокумарины, 2-иминокумарины, нуклеофильное замещение.

Синтез, строение и реакционная способность 2-иминокумаринов активно изучаются в последние десятилетия [1–3]. Многие представители этого класса находят применение в качестве красителей для различных целей [4, 5] и имеют интересную биологическую активность [6]. В то же время, N-замещенные производные 2-иминокумаринов изучены мало [7–9].


Существует несколько подходов к синтезу N-замещенных 2-иминокумарина: взаимодействие 2-тиокумаринов [10], диалкилацеталей кумаринов [11], солей 2-этоксибензопирилия [8] или 2-иминокумаринов [7] с N-нуклеофилами. Из перечисленных методов синтеза N-замещенных 2-иминокумарина наиболее удобно использовать в качестве исходных соединений 2-иминокумарины. Следует отметить, что некоторые N-замещенные 2-иминокумарин-3-карбоксамиды могут выступать в качестве полупродуктов в синтезах различных 3-гетарилкумаринов [12, 13].

Целью нашей работы было изучение особенностей взаимодействия 3-(4-арилтиазолил-2)- и 3-(бензотиазолил-2)-2-иминокумаринов с N-нуклеофилами различной природы.

Исходные 3-тиазолил-2-иминокумарины $3\mathbf{a}$ — \mathbf{i} и $4\mathbf{a}$, \mathbf{b} были получены по известной методике [3] конденсацией салициловых альдегидов $1\mathbf{a}$ — \mathbf{e} с соответствующими метиленактивными нитрилами $2\mathbf{a}$ — \mathbf{f} в изопропиловом спирте в присутствии каталитических количеств пиперидина. Полученные соединения вводили в реакции с первичными аминами в этаноле, бутаноле, ДМФА в присутствии каталитических количеств $\mathbf{H}_2\mathbf{SO}_4$ или в АсОН. Установлено, что взаимодействие 3-тиазолил-2-иминокумаринов $3\mathbf{a}$ — \mathbf{i} и $4\mathbf{a}$, \mathbf{b} с 1.5—2-кратным избытком N-нуклеофила $5\mathbf{a}$ — \mathbf{q} в кипящем ДМФА в присутствии каталитических количеств $\mathbf{H}_2\mathbf{SO}_4$ приводит к максимальным выходам конечных соединений. Этим способом был получен ряд N-замещенных 3-[4-(4- \mathbf{R}^2 -фенил)тиазолил-2]-2-иминокумаринов $6\mathbf{a}$ — \mathbf{u} :

1 a $R^1=H$, b $R^1=4$ -NEt₂, c $R^1=4$ -OH, d $R^1=5$ -Cl, e $R^1=5$,6-бензо, 2 a $R^2=H$, b $R^2=Me$, c $R^2=Cl$, d $R^2=Br$, e $R^2=NO_2$; 3 a—c $R^1=H$, d—f $R^1=7$ -NEt₂, g $R^1=7$ -OH, h $R^1=6$ -Cl, i $R^1=5$,6-бензо, a $R^2=H$, b $R^2=Me$, c $R^2=NO_2$, d $R^2=Me$, e $R^2=Cl$, f, g $R^2=Br$, h $R^2=Cl$, i $R^2=Me$; 4 a $R^1=H$, b $R^1=7$ -NEt₂; 5 a $R^3=Ph$, b $R^3=o$ -MeC₆H₄, c, e $R^3=p$ -MeC₆H₄, d $R^3=o$ -MeOC₆H₄, f $R^3=m$ -BrC₆H₄, g $R^3=p$ -Me₂NC₆H₄, h $R^3=p$ -O₂NC₆H₄, i $R^3=m$ -BrC₆H₄, g $R^3=p$ -Me₂NC₆H₄, h $R^3=p$ -O₂NC₆H₄, i $R^3=m$ -BrC₆H₄, g $R^3=p$ -MeOCH₂CN, n $R^3=N$ HCOCH₂Py⁺Cl⁻, o $R^3=N$ HCSNH₂, p $R^3=N$ HCONH₂, q $R^3=O$ H; 6 a—i $R^1=H$, j—r $R^1=-N$ Et₂, s $R^1=7$ -OH, t $R^1=6$ -Cl, u $R^1=5$,6-бензо; a—e $R^2=H$, f—h $R^2=Me$, i $R^2=NO_2$, j, k $R^2=Me$, l—n $R^2=Cl$, o—s $R^2=Br$, t $R^2=Cl$, u $R^2=Me$; a, l, t $R^3=Ph$, b, j $R^3=p$ -Me₂NC₆H₄, c $R^3=m$ -BrC₆H₄, d, q $R^3=N$ HPh, e $R^3=N$ HCOCH₂Py⁺Cl⁻, f $R^3=N$ HCOPh, g $R^3=N$ HCOCH₂CN, h $R^3=N$ HCSNH₂, i $R^3=p$ -MeOC₆H₄, k $R^3=p$ -O₂NC₆H₄, m $R^3=m$ -BrC₆H₄; 7 a $R^1=H$, b $R^1=7$ -NEt₂, a $R^3=p$ -MeOC₆H₄; b $R^3=o$ -MeOC₆H₄; 7 a $R^1=H$, b $R^1=7$ -NEt₂, a $R^3=p$ -MeOC₆H₄; b $R^3=o$ -MeOC₆H₄;

В реакцию легко вступают ароматические амины различной основности (от *п*-диметиламиноанилина до *п*-нитроанилина) и гетероциклические амины (α-аминопиридин и 2-аминотиазол). В случае пространственно затрудненного *о*-броманилина продукт реакции выделить не удалось. Наличие других *о*-заместителей в нуклеофиле приводит лишь к небольшому снижению выхода конечных соединений (табл. 1). Продукты конденсации с такими нуклеофилами как фенилгидразин, гидразиды бензойной и циануксусной кислот, реактив Жирара "Р" (1-(карбазоилметил)пиридинийхлорид), тиосемикарбазид, семикарбазид, гидроксиламин были получены в аналогичных условиях. Для синтеза N-замещенных 3-бензотиазолил-2-иминокумаринов 7а,b более пригодным оказалось использование кислого катализа в кипящем бутаноле.

ЭСП растворов соединений 6a,b,d,i (a) и 6j,k,l,q (b)

Синтезированные 3-тиазолил-2-иминокумарины **6а**—и и **7а**,**b** представляют собой мелкокристаллические вещества от светло-желтого до темно-красного цвета. Растворимость полученных соединений в обычных органических растворителях (EtOH, CH_3CN , $ДM\Phi A$) существенно меняется в зависимости от природы заместителей.

В электронных спектрах поглощения растворов полученных соединений в области 220–550 нм наблюдаются два и более максимума поглощения (табл. 1). В случае незамещенных в кумариновой части ($\mathbf{R}^1=\mathbf{H}$) 2-иминокумаринов, не содержащих сильно донорных или сильно акцепторных заместителей, ЭСП имеют вид, характерный для 3-гетарилкумаринов и 3-гетарил-2-иминокумаринов, незамещенных по иминогруппе, например, соединение **6a** ($\mathbf{R}^1=\mathbf{R}^2=\mathbf{H},\,\mathbf{R}^3=\mathbf{Ph};\,\mathbf{рис}.\,a$), максимум длинноволновой полосы поглощения в спектре этого соединения имеет практически ту же величину (376 нм), что и в спектре 3-(4-фенилтиазолил-2)-2-иминокумарина (375 нм) [15].

Эти факты свидетельствуют о малом влиянии заместителя R^3 = Ph на поглощение кумаринового хромофора. В то же время, при введении в иминогруппу сильных донорных заместителей (R^3 = p-Me₂NC₆H₄ или R^3 = NHPh соединения **6b** и **6d**), вид спектра поглощения существенно изменяется. Сильный батохромный сдвиг длинноволновой λ_{max} (δ = 59 для **6b** и 72 нм для **6d**) свидетельствует о сопряжении в новой хромофорной системе, со значительным участием заместителя R^3 в иминогруппе (рис. a). Влияние заместителя R^2 достаточно сильно сказывается только в случае R^2 = NO₂ (соединение **6i**): гипсохромный сдвиг длинноволновой полосы поглощения (23 нм) и существенное изменение общего вида спектра в этом случае демонстрируют возможность влияния заместителя R^2 на электронное строение хромофорной системы. Введение сильно донорной N,N-диэтиламиногруппы в положение 7 кумарина (R^1 = NEt₂) приводит к изменениям ЭСП, характерным для 3-тиазолилкумаринов:

Характеристики соединений 6а-u, 7a,b

Соеди-	Бругто-	Найдено N. %	J ₀ III J	WK ornesen to out!	ЭСП (в этаноле), А, нм	Выход
нение	формула	Вычислено N, %); mir.,	III CIRALP, V, CM	(€•10 ⁻³ , л/моль см)*	%
63	Czth ₁₆ N ₂ OS	7.36	176-177	1557, 1588; 1646; 3087	255 (34.2); 376 (17.2)	65
3	C ₂₆ H ₂₁ N ₃ OS	9.89	230–232	1553,1599, 1642, 2785; 3101	242 (28.7); 268 (27.3); 435 (7.8)	82
39	C24H15BrN2OS	5.06 6.10	172-173	1558, 1585, 1600; 1653; 3048	256 (37.2); 376 (19.1)	59
, pg	C24H17N3OS	10.67 10.63	245-246	1509, 1580, 1596, 3098, 3378	274 (34.8); 351 (11.5); 448 (7.3)	87
ee e	C ₂₅ H ₁₉ ČIN ₄ O ₂ S	11.69 11.80	238–239	1600; 1638; 1691; 3065; 3430	385 (14.5)	83
J9	C ₂₆ H ₁₉ N ₃ O ₂ S	9.63 9.60	250-252	1511, 1594; 1638; 165\(\frac{3}{2}\); 2925; 3100; 3192	264 (36.8); 382 (16.3)	78
, 3 9	C2H16NOSS	14 07 13.99	>300	1602; 1645; 1683; 2911; 2934; 3065, 3100, 3404	386 (16.2)	96
ų 9	C20H16N4OS2	14.32 14.27	248-250	1500, 1592; 1635; 2910; 3105; 3150, 3265, 3425	221 (26.0); 270 (34.0); 390 (14.2)	98
' 5	C ₂₅ H _{Pl} N ₃ O ₄ S	9 19 9 23	264–266	1503, 1598; 1655; 2830; 2991, 3061	227 (19.1); 298 (14.5); 353 (15.0)	63
∵	C31H32N4OS	10.95 11.01	195–197	1510, 1592, 1610, 1652; 2805, 2910, 2975, 3075, 3117	255 (30.9), 324 (18.3); 451 (29.2)	72
3 .	C ₂₉ H ₂₆ N ₄ O ₃ S	11.08 10.97	250–251	1502, 1559, 1584, 1634; 2872, 2962; 3079	229 (30.7); 461 (13.5)	25
75	C ₂₈ H ₂₄ ClN ₃ OS	8 65 8 65	248–249	1511, 1585, 1606; 1658; 2923;2976; 3080	256 (30.9); 337 (9.5); 448 (36.2)	06
em e	C2sH21CIN4OS2	11.36 11.36	234–235	1511, f579; 1640; 2920, 2965; 3072, 3108	230 (23 5); 287 (19.9); 357 (21.6); 474 (34.1)	89

81	49	99	95	20	70	89	22	8	89
260 (32 6), 324 (6 6), 451 (31,5)	265 (27 3), 336 (54), 441 (36 8)	268 (29.2), 338 (8 7), 446 (40.0)	270 (31 4), 389 (11 1), 452 (26 1)	251 (31 8), 313 (7 7), 433 (34 0)	269 (37 2), 394 (20 1)	385 (16 4)	252 (93 6), 411 (30 3)	266 (19 1), 291 (22 1), 325 (18 7), 398 (10 7)	295 (14 7), 453 (42 8)
1583, 1603, 1640, 1708, 2924, 2970, 3108, 3392, 3462	1512, 1590, 1611, 1666, 2926, 2965	1582, 1613, 1658, 2924;2965, 3091	1506, 1588, 1602, 1630, 2920, 2965, 3092, 3365	1508, 1587 1603, 1641; 2923, 2968, 3112, 3302	1568, 1598 1650, 2905, 3095, 3292	1562, 1591, 1643, 3090	1512, 1565, 1582, 1685, 2911, 3059, 3102 3426	1563, 1590, 1651, 2834, 3046	1515,1582,1610, 1668, 2821, 2921, 2966; 3055
 265–266	192–193	227-228	243–244	268-269	245–247	230–232	238-239	180-181	244-246
14 93	7.83	10 45 10 54	10.25 10.27	8.87 8 93	<u>578</u> 572	621 623	725 729	72 <u>1</u> 729	919
C23H22CIN5O2S	C29H26BrN3OS	C ₂₇ H ₂₃ BrN ₄ OS	C ₂₈ H ₂₅ BrN ₄ OS	C22HeoBrN3O2S	C25H17BfN2O2S	C24Ht4Cl2N2OS	C23HleN2O2S	C23H16N2O2\$	CzHeswios
 ęu ,	09	d9	ь	- Qu	s9	19	n9	7a	4

* ЭСП, соединений белля, я 7а сняты в растворах МеСN, соединений беле, — в растворах ДМФА

Спектры ЯМР 1Н соединений ба-и, 7а, b

5				Химические сдвиги 8, м д	б,мд		
3 5	4-H KVM3-	S-H	СН кумарина	СН аром	CH abow BR3	CH amphar	HO HN
нение	рина	30Ла		в положении 4 тиазола			
6а	898	28 L	7 18 (1H, д. 8-H), 7 38–7 46 (2H, м, 6-, 7-H), 7 68 (1H, д. 5-H)	7 23 (1H, т, 4-H), 7 26–7 38 (4H, м, 2-, 3-, 5-, 6-H)	7 10 (1H, r, 4-H), 7 26–7 38 (4H, м, 2-, 3-, 5-, 6-H)	1	1
9	863	8.23	723-761 (IH, 4, 8-H), 723-761 (2H, M, 6-, 7-H), 781 (IH, 4, 5-H)	723-761 (5H, M, 2-, 3-, 4-, 5-, 6-H)	680(2H, n, 3-, 5-H), 8 11 (2H, n, 2-, 6-H)	2 94 (6H, c, CH ₃ Ar)	1
99	8 80	8 10	6 55 (1H, q, 8-H), 7 15–7 58 (2H, м, 6-, 7-H), 7 80 (1H, q, 5-H)	7 15-7 58 (5H, M, 2-, 3-, 4-,5-,6-H)	8 08 (1H, c, 2-H), 7 15–7 58 (3H, м, 4-, 5-, 6-H),	I	I
p9	823	8 18	725 (1H, д. 8-H), 740–750 (2H, м, 6-, 7-H), 762 (1H, д. 5-H)	7 19 (1H, T, 4-H), 7 29–7 38 (4H, M, 2-, 3-, 5-, 6-H)	6 75 (1H, т, 4-H), 7 29–7 38 (4H, м, 2-, 6-, 5-, 3-H)	ł	9 60 (1H, c, NH)
99	863	8 24	720-745 (1H, м, 8-H), 748-770 (2H, м, 6-, 7-H), 78 (1H, л, 5-H)	7 20-7 45 (2H, M, 3-, 5-H), 8 02 (2H, A, 2-, 6-H); 7 62 (1H, c, 4-H)	8 25 (2H, м, 3-, 5-H), 8 45 (1H, 1, 4-H), 9 22 (2H, д, 2-, 6-H)	6 20 (2H, c, CH ₂)	11 90 (1H, c, NH)
9	8 48	808	7 20–7 32 (1H, м, 8-H), 7 38–7 60 (2H, м, 6-, 7-H), 7 69 (1H, д, 5-H)	7 20-7 32 (2H, m, 3-, 5-H), 7 85-7 98 (2H, m, 2-, 6-H)	7 38–7 60 (3H, м, 4-, 3-, 5-H), 7 85–7 98 (2H, м, 2-, 6-H)	235 (3H, c, CH ₃)	11 08 (1H, c, NH)
3 9	8 49	8.23	733–761 (3H, M, 6-, 7-, 8-H); 777 (1H, 14, 5-H)	7-, 8-H); 732 (2H, д, 3-, 5-H), 798 (2H, д, 2-, 6-H)	ı	238(3H, c CH ₃), 430(2H, c, CH ₂)	11 35 (1H, c, NH)
6h	8 46	8 06	727(1H, n, 8-H), 745–756(2H, m, 6-, 7-H), 771(1H, n, 5-H)	724(2H, ± 3·, 5·H), 794 (2H, n, 2·, 6·H)	I	2 40 (3H, c, CH ₃ Ar)	7 05 (1H, c, NH), 8 48 (1H, c, NH), 10 30 (1H, c, NH, (pasmetraiř)
.j	898	8 44	7 21-7 32 (2H, M, 6-, 8-H), 7 48 (1H, 1r, 7-H), 7 77 (1H, A, 5-H)	8 24 (2H, 12, 6-H), 8 33 (2H, 12, 5-H)	6 96 (2H, µ, 3-, 5-H), 7 44 (2H, µ, 2-, 6-H)	3 80 (3H, c, CH ₃ Ar),	ı
· <u>·</u>	8 43	7 62	634 (1H, c, 8-H), 653 (1H, n, 6-H), 1753 (2H, n, 3+,5-H); 790 (2H, n, 36 (1H, n, 5-H)) 2-, 6-H)	7 53 (2H, n, 3-, 5-H); 7 90 (2H, n, 2-, 6-H)	6 72 (2H, д. 3-, 5-H), 7 43 (2H, д. 121 (6H, т. CH₃CH ₂), 2 41 (2+, c. CH ₃ Ar ₂), 3 00 (6H, c, 2CH ₃ Ar ₃), 3 48 (4H, c, 2CH ₂ Ar ₃), 3 48 (4H, c, 2CH ₂ CH ₃)	121 (6H, т, CH₃C H ₃), 241 (3H, c, CH ₃ Ar), 300 (6H, c, 2CH ₃ Ar), 348 (4H, к, CH ₂ CH ₃)	ı

д. 6-Н); 723 (2Н, д. 3., 5-Н), 794 (2Н, д. 2., 6-Н)	д 6-Н), 749 (2H, д 3-,3-H); 8 13 (2H, д 2-, 6-Н)	(IH, д.6-H), 748 (2H, д.3-, 5-H); 767 (2H, д. 740 (IH, д. 4H); 8 14 (IH, д. 14 (IH, d.	(1H, c, 752 (2H, μ 3-, 5-H), 8 16 (2H, μ 2-, 6-H)	д, 6-Н),	(1H, 4, 6-H), 788 (2H, 4,3-,5-H), 798 (2H, 4, 715 (2H, 14, 6-H); 772 (1H, 2,6-H)) 1, 5-H), 781 (1H, c,3-H)	8(1H, c, 8-H), 765 (2H, 14/3+, 5-H), 8 02 (2H, 14 (2H, 14 (2H), 15-7) 38 (2H, 14, 14 (2+, 6+1)) (4H, 14, 14, 15-6+1)	(1H, μ) 7 64 (2H, μ , 3-, 5-H), 8 01 (2H, μ) - 2-, 6-H)	(1H, μ , 6-H), 7 s8 (2H, μ , 3-, 5-H), 8 02 (2H, μ) 7 15 (2H, μ , 3-, 5-H), 7.25 (2H, μ , 2-, 6-H) μ , 2-, 6-H)	(1H, µ 745 (2M, µ, 3-, 5-H); 8 10 (2H, µ 715 (1H, η, 4-H), 731-741 2-, 6-H)	4 (1H, μ 730 (2H, μ, β-, ξ-H), 7.87–8 15 (2H, м, 6-, 8-H) 6-, 8-H) 6-, 8-H)	1, 746–757 (2H, 723–731 (HH, 14, 5-H), 744 (HH, 17, 6–767 (2H, 14, 3-, 5-H), 746–757 (H, 14, 4-H) (2H, 14, 2-, 6-H)	T 6-H): 727 (1H. T. 5-H). 735-745 (1H. M.
787	SU S	8 78 8 06 667 (1H, c, 8-H), 6 84 (1H, 7, 773 (1H, 4, 5-H)	831 8 18 661 (1H, д, 6-H), 678 (1H, 8-H), 747 (1H, д, 5-H)	8 59 7 97 6 18 (1H, c, 8-H), 6 60 (1H, 7 49 (1H, д, 5-H)	8 72 8 41 6 22 (1H, c, 8-H), 6.64 (1H, 749 (1H, 14, 5-H)	8 13 8 10 657 (IH, д. 6-H), 668 (IH, 742 (IH, д. 5-H)	8 17 8 12 6.44 (1H, c, 8-H), 6.55 (1H, д, 6-H), 7.42 (1H, д, 5-H)	865 805 655 (1H, c, 8-H), 6,71 (1H, µ, 6-H), 752 (1H, µ, 5-H)	8 72 8 17 7.21 (1H, 4, 8-H), 7,47 (1H, 7-H), 7,47 (1H, 7-H), 7 84 (1H, 4, 5-H)	8 91 8 09 7 47 (1H, μ , 10-H), 7.64 (1H, μ , 5-H), 7.74 (1H, π , 7-H), 7 87-8 15 (2H, π , 6-, 8-H); 8 45 (1H, π , 9-H)	8 77 – 7 23–7 31 (1H, м, 8-H), 7 46–7 57 (2H, м, 6-, 7-H); 7 82 (1H, д, 5-H)	8 64 - 6 15 (1H, c, 8-H), 6 52 (1H,

наблюдается рост интенсивности и значительный батохромный сдвиг длинноволновой полосы поглощения (72 нм, рис. b, соединение **6l**) по сравнению с незамещенными кумаринами. Варьирование электронной природы заместителя R^3 значительно влияет на вид спектра ($R^3 = p$ -Me₂NC₆H₄ **6j**, $R^3 = N$ HPh **6q** и $R^3 = p$ -O₂NC₆H₄ **6k**, рис. b), в то время как положение максимума длинноволновой полосы изменяется не столь сильно.

В ИК спектрах всех синтезированных соединений проявляется сильная полоса валентных колебаний связи С=N иминолактонной группы кумаринового цикла в области 1596–1685 см⁻¹. В области 1502–1613 см⁻¹ проявляются полосы связей С=С ароматических и гетероароматических колец. Для соединений бе—g,n полосы в области 1555–1708 см⁻¹ соответствуют колебаниям связей С=О гидразидной группы. Слабые полосы колебаний алкильных связей С-H, заместителей R² и R³ наблюдаются в области 2785–2910 см⁻¹. Для 7-N,N-диэтиламинопроизводных в области 2962–2675 см⁻¹ проявляются характерные для диэтиламиногруппы полосы средней силы. В области 3046–3117 см⁻¹ выявляются слабые полосы колебаний ароматических и гетероароматических связей С-H. Полосы колебаний групп ОН и NH проявляются в области 3150–3462 см⁻¹. Достаточно низкие частоты колебаний некоторых групп NH в соединениях 6f (3192 см⁻¹) и 6h (3150 см⁻¹) могут свидетельствовать об образовании прочных водородных связей в этих соединениях в твердом состоянии (табл. 1).

В спектрах ЯМР 1 Н (табл. 2) соединений **6g,е** частично проявляются сигналы минорной изомерной формы, которая, по-видимому, является следствием *E,Z*-изомерии связи C=N. В то время как во всех спектрах N,N-диэтиламинопроизводных синглет протона 8-H кумарина находится в более сильном поле, чем дублет протона 6-H, в соединениях **6q** (\mathbb{R}^3 = NHPh) и **6n** (\mathbb{R}^3 = NHCONH₂) наблюдается обратная последовательность. Это, вероятно, связано с возможностью образования внутримолекулярной водородной связи N-H...О в этих соединениях.

В результате проведенной работы выяснено, что 2-имино-3-тиазолилкумарины взаимодействуют в условиях кислого катализа с N-нуклеофилами различной основности с образованием N-замещенных 3-тиазолил-2-иминокумаринов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Электронные спектры поглощения получены на спектрофотометре Hitachi U-3210. ИК спектры измерены в таблетках КВг на спектрометре Specord IR-75 в области от 400 до $4000~{\rm cm}^{-1}$. Спектры ЯМР 1 Н зарегистрированы на приборе Bruker-300 (300 МГц) в ДМСО- $d_{\rm 6}$, внутренний стандарт ТМС. Чистоту всех соединений контролировали методом ТСХ на пластинках Silufol $200 \times 200~{\rm km}$ в системе этилацетат—толуол, 1:2.

Физико-химические и спектральные характеристики соединений 6 и 7 приведены в табл. 1 и 2.

N-Замещенные 3-[4-(4-\mathbb{R}^2-фенил)тиазол-2-ил]-2-иминокумарины ба-и (общая методика). Растворяют 3 ммоль 2-иминокумарина в 10 мл ДМФА, добавляют 4.5–6.0 ммоль аминосоединения, 3–5 капель 10 % раствора H_2SO_4 в метаноле и кипятят 15–20 мин. После охлаждения раствор разбавляют 10-кратным объемом метанола. Осадок отфильтровывают и перекристаллизовывают из подходящего растворителя (PhMe, MeCN).

N-Замещенные 3-бензотиазолил-2-иминокумарины 7а,b (общая методика). Растворяют 3 ммоль 2-иминокумарина в минимальном объеме бутанола при нагревании, добавляют 4.5-6 ммоль замещенного анилина, 2-3 капли 10 % раствора H_2SO_4 в метаноле и кипятят 30 мин-1 ч 30 мин. После охлаждения выпавший осадок отфильтровывают и перекристаллизовывают из подходящего растворителя (BuOH, MeCN).

СПИСОК ЛИТЕРАТУРЫ

- 1. C. N. O'Callaghan, T. B. H. McMurry, J. E. O'Brien, J Chem. Soc., Perkin Trans. 2, 425 (1998).
- А. А. Карасев, Л. Л. Лукацкая, М. И. Рубцов, Е. К. Жикол, С. Н. Ярмоленко, О. А. Пономарев, ЖОХ, 65, 1547 (1995).
- 3. Я. В. Белоконь, С. Н. Коваленко, А. В. Силин, В. М. Никитченко, *XIC*, 1345 (1997).
- M. M. Asimov, V. M. Nikitchenko, A. I. Novikov, A. N. Rubinov, Zs. Bor, L. Gaty, Chem. Phys Lett., 149, 140 (1988).
- 5. C. Vamvakaris, M. Patsch, W. Mach, US Pat. 4404389; Chem. Abstr., 92, 41931 (1980).
- T. R. Burke, B. Lim, V. E. Marquez, Z.-H. Li, J. B. Bolen, I. Stefanova, I. D. Horak, J. Med Chem., 36, 425 (1993).
- 7. В. А. Зубков, С. Н. Коваленко, В. П. Черных, С. М. Ивков, *XГС*, 760 (1994).
- 8. M. A. Кирпиченок, С. К. Горожанкин, И. И. Грандберг, XГС, 751 (1988).
- 9. N. B. Desai, US Pat. A299959; Chem. Abstr., 88, 75311 (1978).
- 10. F. Tiemann, Ber., 19, 1661 (1886).
- 11. K. Sato, Y. Nagamori, M. Okazaki, Nippon Kagaku, 492 (1976).
- 12. С. Н. Коваленко, К. М. Сытник, В. М. Никитченко, С. В. Русанова, В. П. Черных, А. О. Порохняк, *XГС*, 190 (1999).
- 13. Y. V. Bilokin, M. V. Vasylyev, O. V. Branytska, S. M. Kovalenko, V. P. Chernykh, *Tetrahedron*, 55, 13757 (1999).
- А. О. Дорошенко, Е. А. Посохов, Я. В. Белоконь, С. Н. Коваленко, В. В. Иванов, О. А. Пономарев, XFC, 1356 (1997).

Харьковский национальный университет им. В. Н Каразина, Харьков 61077, Украина e-mail: NIC@univer.Charkov.ua

Поступило в редакцию 24. 07. 2001

^вНациональная фармацевтическая академия, Харьков 61002, Украина