С. Н. Коваленко, К. М. Сытник, В. М. Никитченко, С. В. Русанова, В. П. Черных, А. О. Порохняк

РЕЦИКЛИЗАЦИЯ 2-ИМИНО-2H-1-БЕНЗОПИРАНОВ ПОД ДЕЙСТВИЕМ НУКЛЕОФИЛЬНЫХ РЕАГЕНТОВ

4*. ИСПОЛЬЗОВАНИЕ 2-(N-АРОИЛГИДРАЗОНО)КУМАРИН-3-КАРБОКСАМИДОВ ДЛЯ СИНТЕЗА 3-(1,3,4-ОКСАДИАЗОЛИЛ-2)КУМАРИНОВ

Предложен новый метод синтеза 3-(1,3,4-оксадиазолил-2) кумаринов, основанный на рециклизации 2-(N-ароилгидразоно) кумарин-3-карбоксамидов, легко получаемых взаимодействием 2-иминокумарин-3-карбоксамидов с гидразидами аренкарбоновых кислот в кислой среде. Показаны преимущества данного метода над альтернативными схемами синтеза. Высказаны предположения о механизме реакции.

Ранее нами было показано [2], что под действием гидразидов карбоновых кислот 2-иминокумарин-3-карбоксамиды при нагревании в бутаноле-1 легко рециклизуются в $N_{(1)}$ -ациламидразоны кумарин-3-карбоновых кислот. Если эту реакцию проводить в ледяной уксусной кислоте, то раскрытия иминолактонного цикла 2-иминокумарин-3-карбоксамидов (Ia—r) не происходит, также как и в случае первичных аминов [3], а образуются продукты замещения по положению 2 кумарина — 2-(N-ароилгидразоно) кумарин-3-карбоксамиды IIa—u.

$$R^{1}$$
 NH_{2}
 NH

I a $R^1 = H$; 6 $R^1 = 6-\mu$ -C6H₁₃, 7-OH; B $R^1 = 7$ -N(C₂H₅)₂; r $R^1 = 5$,6-бензо; II, III a $R^1 = H$, $R^2 = Ph$; 6 $R^1 = H$, $R^2 = 4$ -FC₆H₄; B $R^1 = 6-\mu$ -C₆H₁₃, 7-OH, $R^2 = Ph$; r $R^1 = 7$ -N(C₂H₅)₂, $R^2 = 4$ -CH₃C₆H₄; e $R^1 = 7$ -N(C₂H₅)₂, $R^2 = 2$ -CIC₆H₄; $R^2 = 7$ -N(C₂H₅)₂, $R^2 = 9$ -Py; 3 $R^1 = 5$,6-бензо, $R^2 = 9$ -Pi; $R^1 = 5$,6-бензо, $R^2 = 4$ -CH₃OC₆H₄

Нами было обнаружено, что при нагревании соединений IIa—и в высококипящих растворителях (о-дихлорбензол, нитробензол, хинолин) или при проведении реакции в плаве в течение 10...30 мин они легко и с хорошими выходами превращаются в 3-(1,3,4-оксадиазолил-2)кумарины (IIIa—и) (табл. 1, 2).

По-видимому, 2-(N-ароилгидразоно) кумарин-3-карбоксамиды IIа—и за счет амидо-имидольной таутомерии способны к внутримолекулярной атаке гидроксильной группы имидольной формы по электронодефицитному атому углерода в положении 2 кумарина. При этом происходит раскрытие

Сообщение 3 см. [1].

Характеристики синтезированных соединений

Соеди- нение	Брутто- формула	Выход, %	<i>Т</i> пл, •С	Вычислено, % наидено, % N	ИК спектры (КВг), см ⁻¹ (отнесение)	ЭСП(этанол), λ_{\max} , нм (£)
IIIa	C ₁₇ H ₁₀ N ₂ O ₃	78	216218	9,65 9,73	1744 (VC=0)	342(20000)
1116	C ₁₇ H ₉ N ₂ O ₃ F	55	241243	9,09 9,01	1494, 1610 (VC=C) 1745 (VC=O)	257(11000) 339(17500)
Шв	C23H22N2O4	68	241242	7,17 7,22	1570, 1618 (ν _C - _C) 1744 (ν _C - _O) 2922, 2851 (ν _{C-H}) 3088 (ν _{O-H})	265(14800) 382(32000)
IIIr	C21H19N3O3	69	199201	11,63 11,55	1526, 1582 (\(\nu_{C-C}\)) 1726 (\(\nu_{C-O}\)) 2972, 2931 (\(\nu_{C-H}\))	241 (16500) 283 (11400) 441 (51000)
Шд	C22H21N3O3	72	231232	11,19 11,12	1529, 1621 (ν _{C-C}) 1730 (ν _{C-O}) 2963, 2923, 2870 (ν _{C-H})	247 (20400) 287 (13800) 441 (55000)
IIIe	C21H18N3O3Cl	56	195197	10,62 10,71	1582, 1618 (ν _C -c) 1735 (ν _C -o) 2968, 2928 (ν _{C-H})	250(16000) 440(54200)
Шж	C20H18N4O3	74	220222	15,46 15,57	1524, 1580 (ν _C -c) 1724 (ν _C -o) 2978, 2934 (ν _{C-H})	251 (13700) 446 (48600)
III3	C21H12N2O3	76	223225	8,23 8,36	1564, 1603 (VC=C) 1751 (VC=O)	231 (49300) 261 (37400) 393 (21100)
Ши	C23H16N2O4	82	234236	7,56 7,49	1566, 1611 (VC=C) 1739 (VC=O)	265 (27000) 394 (27300)

иминолактонного и замыкание 1,3,4-оксадиазольного цикла. Далее интермедиат претерпевает *цис-транс*-изомеризацию и происходит повторная нуклеофильная атака по карбамидной группе, ведущая к образованию лактонного цикла.

Характеристики 3-(1,3,4-оксадиазолил-2) кумаринов, полученных предложенным способом и циклизацией $N_{(1)}$ -ациламидразонов кумарин-3-карбоновых кислот, идентичны. Однако продукты, образующиеся при рециклизации 2-(N-ароилгидразоно) кумарин-3-карбоксамидов 11а—и, получаются чище и, как правило, с большими выходами, так как циклизация $N_{(1)}$ -ациламидразонов в 1,3,4-оксадиазолы может сопровождаться образованием 1,3,4-триазольных производных.

Было установлено, что введение в молекулу IIа—и заместителей электронодонорной природы (как в ядро кумаринового фрагмента, так и в арильный фрагмент) заметно облегчает протекание процесса рециклизации. И, напротив, электроноакцепторные группы заметно снижают скорость протекания реакции. Это связано, по-видимому, со стабилизацией имидольной формы соединения IIа—и за счет сопряжения арильного и кумаринового фрагментов. В случае электроноакцепторных заместителей реакцию необходимо проводить в более жестких условиях, например увеличить время нагревания или использовать в качестве реакционной среды хинолин.

Как следует из физико-химических данных (табл. 1, 2), в ИК спектрах синтезированных соединений проявляется сильная полоса валентных колебаний С=О лактонной группы кумаринового цикла в области 1724...1751 см⁻¹. В области 1580...1630 см⁻¹ проявляются полосы С=С ароматических колебаний. Колебания связей C=N 1,3,4-оксадиазольного цикла практически не проявляются.

Таблица 2 Спектры ПМР синтезированных соединений (ДМСО-D₆)

Соеди-	Химический сдвиг, δ , м д					
нение	1Н, с. 4-Н Наром		другие протоны			
IIIa	9,02	7,458,13 (9Н, м)				
1116	9,01	7,48 (4H, м, (8,6,3',5')-H); 7,75 (1H, т, 7-H); 7,96 (1H, д, 5-H); 8,17 (2H, м, (2',6')-H)	_			
Шв	8,8 <i>5</i>	6,82 (111, c, 8-H); 7,64 (4H, м, (3',4',5',5)-H); 8,09 (2H, м, (2',6')-H)	0,86 (3H, T, CH ₃ (CH ₂) ₄ CH ₂) 1,30 (8H, M, CH ₃ (CH ₂) ₄ CH ₂ 1,56 (2H, M, CH ₃ (CH ₂) ₄ CH ₂ 11,09 (1H, c, OH)			
IIIr	8,62	6,55 (1H, д, 8-H); 6,70 (1H, д, д, 6-H); 7,527,60 (4H, м, (3',4',5',5)-H); 8,058,12 (2H, м, (2',6')-H)	1,21 (6H, т, N(CH ₂ CH ₃) ₂) 3,50 (4H, к, N(<u>CH</u> ₂ CH ₃) ₂)			
Шд	8,66	6,61 (1H, д, 8-H); 6,82 (1H, д, д, 6-H); 7,45 (2H, д, (3',5')-H); 7,65 (1H, д, 5-H); 7,96 (2H, д, (2',6')-H)	1,17 (6H, т, N(CH ₂ CH ₃) ₂) 2,42 (3H, с, CH ₃) 3,50 (4H, к, N(<u>CH</u> ₂ CH ₃) ₂)			
IIIe	8,63	6,56 (1H, д, 8-H); 6,75 (1H, д. д, 6-H); 7,527,68 (4H, м, (3',4',5',5)-H); 8,04 (1H, д. д, (2')-H)	1,20 (6H, т, N(CH ₂ CH ₃) ₂) 3,49 (4H, к, N(<u>CH</u> ₂ CH ₃) ₂)			
жIII	8,75	6,61 (1H, д, 8-H); 6,80 (1H, д. д, 6-H); 7,63 (1H, д, 5-H); 7,97 (2H, д, β-H); 8,84 (2H, д, α-H)	1,15 (6H, т, N(CH ₂ <u>CH</u> ₃) ₂) 3,48 (4H, к, N <u>(CH</u> ₂ CH ₃) ₂)			
III3	9,61	7,567,67 (5H, M, (3',5',4,7,10)-H); 7,79 (1H, T, 6-H); 8,05 (1H, Д, 5-H); 8,20 (2H, M, (2',6')-H); 8,29 (1H, Д. Д, 8-H); 8,71 (1H, Д, 9-H)				
Ши	9,59	7,13 (2H, д. д., (2',6')-H); 7,60 (1H, д., 10-H); 7,66 (1H, д., 7-H); 7,80 (1H, т., 6-H); 8,038,16 (3H, м., (5,2',6')-H); 8,28 (1H, д., 8-H); 8,73 (1H, д., 9-H)	2,76 (3H, c, OCH ₃)			

В спектрах ПМР полученных соединений наблюдаются сигналы ароматических протонов в области 6,55...8,84 м. д., а синглет протона в положении 4 кумарина — в области 8,62...9,61 м. д. (табл. 2).

Таким образом, из приведенных фактов следует, что для синтеза 3-(1,3,4-триазолил-2) кумаринов удобно использовать циклизацию $N_{(1)}$ -ациламидразонов кумарин-3-карбоновых кислот [2], тогда как для синтеза 3-(1,3,4-оксадиазолил-2) кумаринов значительные преимущества дает метод, основанный на рециклизации 2-(N-ароилгидразоно) кумарин-3-карбоксамидов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры синтезированных соединений зарегистрированы на спектрометре Specord M-80 в таблетках КВг. ЭСП измерены на спектрофотометре Specord M-40 в этаноле. Спектры ПМР записаны на приборе Bruker WM-360 в ДМСО-D₆, внутренний стандарт ТМС.

Общая методика синтеза 2-(N-ароилгидразоно) кумарин-3-карбоксамидов Па—и. Растворяют 0,01 моль соответствующего 2-иминокумарин-3-карбоксамида в 20...25 мл ледяной уксусной кислоты. К полученному раствору добавляют эквимолекулярные количества гидразида ароматической кислоты. Смесь подкисляют 1.. 2 каплями конц. Н₂SO₄, тщательно перемешивают, нагревают до температуры 40...50 °C и оставляют на 2...3 ч. Выпавший осадок отфильтровывают, промывают этанолом, сушат.

Общая методика синтеза 3-(5-арил-1,3,4-оксадиазолил-2) кумаринов IIIа—и. Нагревают 0,005 моль соответствующего 2-(N-ароилгидразоно) кумарин-3-карбоксамида в минимальном количестве нитробензола или другого высококипящего растворителя в течение 10 ..40 мин. Смесь охлаждают Выпавший осадок отфильтровывают, тщательно промывают эфиром и перекристаллизовывают из подходящего растворителя.

СПИСОК ЛИТЕРАТУРЫ

- 1. Коваленко С. Н., Васильев М. В., Сорокина И. В., Черных В. П., Туров А. В., Руднев С. А. // ХГС. 1998. № 12. С. 1664.
- Коваленко С. Н., Зубков В. А., Черных В П., Туров А. В., Ивков С. М. // ХГС. 1996. № 2. — С. 186.
- 3. Зубков В А, Коваленко С. Н., Черных В. П, Ивков С. М. // ХГС. 1994. № 6. С. 760.

Украинская фармацевтическая академия, Харьков 310002 e-mail: kosn@ukrfa.kharkov.ua

Поступило в редакцию 11.02.98

Харьковский государственный университет, Харьков 310077, Украина