ОҢТҮСТІК ҚАЗАҚСТАН МЕМЛЕКЕТТІК ФАРМАЦЕВТИКА АКАДЕМИЯСЫ ХАБАРШЫ 3(68)-2014 ж. ТОМ IV

УДК: 543.51:577.115.3:581.46

Н.В. Сидора – к.ф.н., доцент, Национальный фармацевтический университет, г. Харьков, Украина, *sidora2005@rambler.ru*

А.М. Ковалева – д.ф.н., профессор, Национальный фармацевтический университет, г. Харьков **О.Н. Кошевой** – д.ф.н., доцент, Национальный фармацевтический университет, г. Харьков

АРОМАТИЧЕСКИЕ И ТЕРПЕНОИДНЫЕ СОЕДИНЕНИЯ ЦВЕТКОВ *CRATAEGUS PSEUDOMELANOCARPA* M. POP.

В цветках *С. pseudomelanocarpa* М. Рор. методом хромато-масс-спектрометрии выявлено и установлено содержание 49 соединений, из которых 5 ароматических и 13 терпеноидных соединения. Общий выход эфирного масла составляет 0,34%. Основными терпеноидными соединениями являются лимонен, α-терпинеол, линалоол, *цис*-линалоолоксид, *транс*-линалоолоксид, гераниол, геранилацетон, метилизоэвгенол, сквален, гексагидрофарнезилацетон. Доминирующими являются сквален (18,54%) и α-терпинеол (0,65%), среди ароматических соединений – бензофенон (7,77%).

Ключевые слова: *Crataegus pseudomelanocarpa*, цветки, хромато-масс-спектрометрия, терпеноиды, ароматические соединения.

Род *Crataegus L.* (Боярышник) семейства *Rosaceae* представлен в мировой флоре более 1500 видами, его представители применяются в научной и нетрадиционной медицине многих стран. *Crataegus pseudomelanocarpa* является представителем секции *Pentagynae*, к которой относится фармакопейный вид *Crataegus pentagyna* Waldst. et Kit. Известно, что близкие виды могут иметь сходный химический состав [3]. Исходя из этого, научный интерес представляет фитохимическое изучение *Crataegus pseudomelanocarpa* с целью расширения номенклатуры растительных источников биологически активных веществ (БАВ).

Целью данной работы стало определение качественного и количественного содержания ароматических и терпеноидных соединений цветков *Crataegus pseudomelanocarpa* M. Pop.

Материалы и методы. Объектом исследования стали цветки *С. pseudomelanocarpa* М.Рор., заготовленные на территории Украины (г. Харьков, ботанический сад университета им. В.Н. Каразина, май 2014 г.). Качественный состав и количественное содержание веществ в цветках определяли хромато-масс-спектрометрическим методом [1, 2]. Навеску воздушно-сухого сырья (0,5 г) помещали в виалу на 20 мл и добавляли внутренний стандарт − тридекан, с последующим использованием полученной концентрации внутреннего стандарта для расчетов. Количественное содержание веществ пересчитывали на сырье. Исследование проводили на хроматографе Agilent Technology HP6890 GC с масс-спектрометрическим детектором 5973N. Условия анализа: хроматографическая колонка кварцевая, капиллярная HP-5MS. Длина колонки 30 м, внутренний диаметр 0,25 мм. Газ-носитель − гелий. Скорость движения газа-носителя 1 мл/1 мин. Объем пробы − 2 мкл. Введение пробы *splitless*, без разделения потока. Скорость введения пробы 1,2 мл/1мин. в течение 0,2 мин. Температура термостата 50 °C с программированием 4 °/мин. до 220 °C. Температура детектора и испарителя 250 °C.

Результаты и их обсуждение

Полученные спектры рассматривали как на основе общих закономерностей фрагментации молекул органических веществ под действием электронного удара, так и в сравнении с данными масс-спектральной библиотеки NIST 05 и WILEY 2007 с общим количеством спектров более 470000 в комплексе с программами для идентификации AMDIS и NIST.

В результате исследования установлено, что выход летучих соединений из цветков C. pseudomelanocarpa М. Рор. составляет 0,34%, из них 0,015% — ароматические соединения, 0,079% — терпеноидные соединения, 0,062% — жирные кислоты, 0,16% — высшие углеводороды. Обнаружено 49 веществ разной химической структуры. Ароматические и терпеноидные соединения, идентифицированные в цветках, представлены в табл. 1.

Количественное содержание ароматических соединений и терпеноидов составило 898,3 мг/кг, что составляет 26,50% от суммы летучих веществ. Среди ароматических соединений (в мг/кг) – бензальдегид (1,4), β -фенилэтиловый спирт (21,4), 2-метокси-4-винилфенол (9,5), бензофенон (69,8), бензилбензоат (10,3); среди терпеноидов – лимонен (2,7), *теранис*-линалоолоксид (6,3), *цис*-линалоолоксид (4,2), линалоол (4,1), α -терпинеол (22,3), гераниол (4,1), анисовый альдегид (41,4), эвгенол (10,1), геранилацетон (4,8), метилизоэвгенол (1,6), дигидрометилжасмонат (8,7), гексагидрофарнезилацетон (37,0), сквален (628,6).

ОҢТҮСТІК ҚАЗАҚСТАН МЕМЛЕКЕТТІК ФАРМАЦЕВТИКА АКАДЕМИЯСЫ ХАБАРШЫ 3(68)-2014 ж. ТОМ IV

Среди терпеноидов доминирует сквален (18,54%); среди ароматических соединений – бензофенон (2,06%).

Таблица 1 - Ароматические и терпеноидные вещества цветков С. Pseudomelanocarpa

Соединение	Время удерживания	Количественное содержание в сырье (мг/кг)
Лимонен	8,90	2,7
Бензальдегид	9,69	1,4
транс-Линалоолоксид	11,07	6,3
<i>цис</i> -Линалоолоксид	11,82	4,2
Линалоол	11,93	4,1
β-Фенилэтиловый спирт	15,23	21,4
α-Терпинеол	16,20	22,3
Гераниол	18,47	14,1
Анисовый альдегид	21,28	41,4
2-Метокси-4-винилфенол	21,98	9,5
Эвгенол	23,01	10,1
Геранилацетон	24,58	4,8
Метилизоэвгенол	24,95	1,6
Дигидрометилжасмонат	30,42	8,7
Бензофенон	31,09	69,8
Гексагидрофарнезилацетон	31,70	37,0
Бензилбензоат	33,11	10,3
Сквален	42,76	628,6

Выводы

- 1. В цветках *С. pseudomelanocarpa* М. Рор. методом хромато-масс-спектрометрии выявлено и установлено содержание 49 соединений, из которых 5 ароматических и 13 терпеноидных соединения. Общий выход эфирного масла составляет 0,34%.
- 2. Основными терпеноидными соединениями *С. pseudomelanocarpa* М. Рор. являются лимонен, α -терпинеол, линалоол, *цис*-линалоолоксид, *теранис*-линалоолоксид, гераниол, геранилацетон, метилизоэвгенол, сквален, гексагидрофарнезилацетон, Доминирующими являются сквален (18,54%) и α -терпинеол (0,65%).
- 3. Среди ароматических соединений идентифицированы бензальдегид, β -фенилэтиловый спирт, 2-метокси-4-винилфенол, бензофенон, бензилбензоат. Доминирующим является бензофенон 7,77% от суммы летучих веществ.

ЛИТЕРАТУРА

- 1. Сидора Н.В., Ковальова А.М., Комісаренко А.М. Хромато-мас-спектрометричне дослідження ліпофільних сполук глодів представників секцій *Tenuifoliae* Sarg. / Актуальні питання фармацевтичної і медичної науки та практики. №2. 2012. С. 26-30.
- 2. Direct resistively heated column gas chromatography (Ultrafast module-GC) for high-speed analysis of essential oils of differing complexities / C. Bicchi, C. Brunelli, C. Cordero, P. Rubiolo and others // J. Chromatogr. A. − 2004. − V. 1024, №1 2. − P. 195 − 207.
- 3. Quattrocchi, Umberto. CRC world dictionary of plant names: common names, scientific names, eponyms, synonyms and etymology / Umberto Quattrocchi. Roca-Ratea. Florida. USA. 2012. v. I. A. C. 634 p.

ТҮЙІН

ОҢТҮСТІК ҚАЗАҚСТАН МЕМЛЕКЕТТІК ФАРМАЦЕВТИКА АКАДЕМИЯСЫ ХАБАРШЫ 3(68)-2014 ж. ТОМ IV

Н.В. Сидора – ф.ғ.к., доцент, Ұлттық фармацевтикалық университеті, Харьков қ, Украина, sidora2005@rambler.ru

А.М. Ковалева – ф.ғ.д., профессор, Ұлттық фармацевтикалық университеті, Харьков қ **О.Н. Кошевой** - ф.ғ.д., доцент, Ұлттық фармацевтикалық университеті, Харьков қ,

CRATAEGUS PSEUDOMELANOCARPA M. POP ГҮЛДЕРІНІҢ АРОМАТИКАЛЫҚ ЖӘНЕ ТЕРПЕНОИДТЫҚ ҚОСЫЛЫСТАРЫ

С. pseudomelanocarpa М. Pop. гүлдерінде хромато-масс-спектометрия әдісімен 49 қосылыстың құрамы анықталды, оның ішінде 5 ароматтық және 13 терпеноидтық қосылыстар эфир майының жалпы шығымы 0,34% негізгі терпеноидтық қосылыстар лимонен, α-терпинеол, линалоол, *цис*линалоолоксид, *тераниол*, гераниол, геранилацетон, метилизоэвгенол, сквален, гексагидрофарнезилацетон болып келеді. Сквален (18,54%) және α-терпинеол (0,65%), соның ішінде ароматикалық қосылыстар – бензофенон (7,77%) доминанттар болып келеді.

Кілт сөздер: *Crataegus pseudomelanocarpa*, гүлдері, хромато-масс-спектрометрия, терпеноидтар, ароматикалық бйланыстар.

SUMMARY

Natalia V, Sydora – c.ph.s., dotcent, The National University of Pharmacy, Kharkov Alla M, Kovalyova – d.ph.s., professor, The National University of Pharmacy, Kharkov Oleh M, Koshovyj – d.ph.s., dotcent, The National University of Pharmacy, Kharkov

AROMATIC AND TERPENOIDS COMPOUNDS FROM CRATAEGUS PSEUDOMELANOCARPA M. POP. FLOWERS

By used chromatography—mass spectrometry method in *C. pseudomelanocarpa* M. Pop. flowers was established content of 49 compounds, from which 5 aromatic and 13 terpenoids compounds. The total yield of the essential oil is 0,34%. The main terpenoids compounds are limonene, α -terpineol, linalool, *cis*-linalool oxide, *trans*-linalool oxide, geraniol, geranilacetone, methylisoeugenol, squalene, hexahydropharnesilaceton. Dominated are squalene (18,54%) and α -terpineol (0,65%), among aromatic compounds — benzophenone (7,77%).

Key words: Crataegus pseudomelanocarpa M. Pop., flowers, chromatography-mass spectrometry, terpenoids, aromatic compounds.

УДК 615.281:582.949.27:581.45

Г. В. Вовк – Национальный фармацевтический университет, г. Харьков, Украина М. М. Мига – Национальный фармацевтический университет, г. Харьков, Украина О. Н. Кошевой – д.ф.н., доцент, Национальный фармацевтический университет, г. Харьков, Украина

ИССЛЕДОВАНИЕ СУХОГО ЭКСТРАКТА ИЗ ЛИСТЬЕВ ШАЛФЕЯ ЛЕКАРСТВЕННОГО ПОЛУЧЕННОГО ПОСЛЕ ПРОИЗВОДСТВА ЭФИРНОГО МАСЛА

АННОТАЦИЯ

Изучены качественный состав и количественное содержание фенольных соединений сухого экстракта из листьев шалфея лекарственного, полученного из шрота после производства эфирного масла. Установлено, что экстракт содержит аминокислоты, полисахариды, гидроксикоричные кислоты, флавоноиды и обладает антимикробным и противовоспалительным действием.

Ключевые слова: шалфей лекарственный, экстракт, аминокислоты, полисахариды, фенольные соединения, антимикробная, противовоспалительная активность.