
Збірник матеріалів ХІ науково-практичної конференції "Управління якістю в фармації"

 12

Lebedynets V. O., Chornyi D. S.*

The National University of Pharmacy, Kharkiv, Ukraine
* LLC "Business Center Pharmacy", Vyshgorod, Ukraine

FDA guidance describes how certain provisions of the medical device Quality System regula-

tion apply to software and software validation system. Planning, verification, testing, traceability,
configuration management, and many other aspects of good software engineering discussed in this
guidance are important activities that together help to support a final conclusion that software is val-
idated. FDA guidance recommends an integration of software life cycle management and risk man-
agement activities.

Based on the intended use and the safety risk associated with the software to be developed,
the software developer should determine the specific approach, the combination of techniques to be
used, and the level of effort to be applied.

While FDA guidance does not recommend any specific life cycle model or any specific tech-
nique or method, it does recommend that software validation and verification activities be con-
ducted throughout the entire software life cycle.

FDA guidance applies to:
− Software used as a component, part, or accessory of a medical device;
− Software that is itself a medical device (e.g., blood establishment software);
− Software used in the production of a device (e.g., programmable logic controllers in

manufacturing equipment);
− Software used in implementation of the device manufacturer's quality system (e.g.,

software that records and maintains the device history record).
This guidance provides useful information and recommendations to the following individuals:
− Persons subject to the medical device Quality System regulation;
− Persons responsible for the design, development, production of medical device software;
− Persons responsible for the design, development, production, or procurement of automated

tools used for the design, development, or manufacture of medical devices or software
tools used to implement the quality system itself.

Any software used to automate any part of the device production process or any part of the
quality system must be validated for its intended use, as required by 21 CFR §820.70(i). This require-
ment applies to any software used to automate device design, testing, component acceptance, manu-
facturing, labeling, packaging, distribution, complaint handling, or to automate any other aspect of
the quality system.

In addition, computer systems used to create, modify, and maintain electronic records and to
manage electronic signatures are also subject to the validation requirements (See 21 CFR §11.10(a)).

Such computer systems must be validated to ensure accuracy, reliability, consistent intended
performance, and the ability to discern invalid or altered records.

Software may be developed in-house or under contract.
However, software is frequently purchased off-the-shelf for a particular intended use.
All production and/or quality system software, even if purchased off-the-shelf, should have

documented requirements that fully define its intended use, and information against which testing
results and other evidence can be compared, to show that the software is validated for its intended
use.

The use of off-the-shelf software in automated medical devices and in automated manufacturing
and quality system operations is increasing. Off-the-shelf software may have many capabilities, only

Збірник матеріалів ХІ науково-практичної конференції "Управління якістю в фармації"

 13

a few of which are needed by the device manufacturer. Device manufacturers are responsible for the
adequacy of the software used in their devices, and used to produce devices.

When device manufacturers purchase "off-the-shelf'' software, they must ensure that it will per-
form as intended in their chosen application. In the table №1 lists the general principles that should
be considered for the validation of software.

Table №1

REQUIREMENTS

A documented software requirements specification provides a baseline for
both validation and verification. The software validation process cannot be
completed without an established software requirements specification (Ref:
21 CFR 820.3(z) and (aa) and 820.30(f) and (g)).

DEFECT
PREVENTION

Software quality assurance needs to focus on preventing the introduction of
defects into the software development process and not on trying to “test qual-
ity into” the software code after it is written. Software testing is very limited
in its ability to surface all latent defects in software code. For example, the
complexity of most software prevents it from being exhaustively tested. Soft-
ware testing is a necessary activity. However, in most cases software testing
by itself is not sufficient to establish confidence that the software is fit for its
intended use. In order to establish that confidence, software developers
should use a mixture of methods and techniques to prevent software errors
and to detect software errors that do occur. The “best mix” of methods de-
pends on many factors including the development environment, application,
size of project, language, and risk

TIME AND
EFFORT

To build a case that the software is validated requires time and effort. Prep-
aration for software validation should begin early, i.e., during design and
development planning and design input. The final conclusion that the soft-
ware is validated should be based on evidence collected from planned efforts
conducted throughout the software lifecycle.

SOFTWARE LIFE
CYCLE

Software validation takes place within the environment of an established
software life cycle. The software life cycle contains software engineering
tasks and documentation necessary to support the software validation effort.
In addition, the software life cycle contains specific verification and valida-
tion tasks that are appropriate for the intended use of the software.

PLANS

The software validation process is defined and controlled through the use of
a plan. The software validation plan defines “what” is to be accomplished
through the software validation effort. Software validation plans are a sig-
nificant quality system tool. Software validation plans specify areas such as
scope, approach, resources, schedules and the types and extent of activities,
tasks, and work items.

PROCEDURES

The software validation process is executed through the use of procedures.
These procedures establish “how” to conduct the software validation effort.
The procedures should identify the specific actions or sequence of actions
that must be taken to complete individual validation activities, tasks, and
work items.

SOFTWARE
VALIDATION
AFTER A
CHANGE

Due to the complexity of software, a seemingly small local change may have
a significant global system impact. When any change (even a small change)
is made to the software, the validation status of the software needs to be re-
established. Whenever software is changed, a validation analysis should be

Збірник матеріалів ХІ науково-практичної конференції "Управління якістю в фармації"

 14

conducted not just for validation of the individual change, but also to deter-
mine the extent and impact of that change on the entire software system.
Based on this analysis, the software developer should then conduct an ap-
propriate level of software regression testing to show that unchanged but
vulnerable portions of the system have not been adversely affected. Design
controls and appropriate regression testing provide the confidence that the
software is validated after a software change.

VALIDATION
COVERAGE

Validation coverage should be based on the software’s complexity and safety
risk – not on firm size or resource constraints. The selection of validation
activities, tasks, and work items should be commensurate with the complex-
ity of the software design and the risk associated with the use of the software
for the specified intended use. For lower risk devices, only baseline valida-
tion activities may be conducted. As the risk increases additional validation
activities should be added to cover the additional risk. Validation documen-
tation should be sufficient to demonstrate that all software validation plans
and procedures have been completed successfully.

INDEPENDENCE
OF REVIEW

Validation activities should be conducted using the basic quality assurance
precept of “independence of review”. Self-validation is extremely difficult.
When possible, an independent evaluation is always better, especially for
higher risk applications. Some firms contract out for a third-party independ-
ent verification and validation, but this solution may not always be feasible.
Another approach is to assign internal staff members that are not involved in
a particular design or its implementation, but who have sufficient knowledge
to evaluate the project and conduct the verification and validation activities.
Smaller firms may need to be creative in how tasks are organized and as-
signed in order to maintain internal independence of review.

FLEXIBILITY
AND
RESPONSIBILITY

Specific implementation of these software validation principles may be quite
different from one application to another. The device manufacturer has flex-
ibility in choosing how to apply these validation principles, but retains ulti-
mate responsibility for demonstrating that the software has been validated.
Software is designed, developed, validated and regulated in a wide spectrum
of environments, and for a wide variety of devices with varying levels of
risk. FDA regulated medical device applications include software that:
• Is a component, part, or accessory of a medical device;
• Is itself a medical device;
• Is used in manufacturing, design and development, or other parts of the
quality system.
In each environment, software components from many sources may be used
to create the application (e.g., in-house developed software, off-the-shelf
software, contract software, shareware). In addition, software components
come in many different forms (e.g., application software, operating systems,
compilers, debuggers, configuration management tools, and many more).
The validation of software in these environments can be a complex under-
taking; therefore, it is appropriate that all of these software validation prin-
ciples be considered when designing the software validation process. The
resultant software validation process should be commensurate with the
safety risk associated with the system, device, or process.

Збірник матеріалів ХІ науково-практичної конференції "Управління якістю в фармації"

 15

Software validation activities and tasks may be dispersed, occurring at dif-
ferent locations and being conducted by different organizations. However,
regardless of the distribution of tasks, contractual relations, source of com-
ponents, or the development environment, the device manufacturer or spec-
ification developer retains ultimate responsibility for ensuring that the soft-
ware is validated.

In addition to the above validation requirement, computer systems that implement part of a

device manufacturer’s production processes or quality system (or that are used to create and maintain
records required by any other FDA regulation) are subject to the Electronic Records; Electronic Sig-
natures regulation. (See 21 CFR Part 11.).

This regulation establishes additional security, data integrity, and validation requirements when
records are created or maintained electronically. These additional Part 11 requirements should be
carefully considered and included in system requirements and software requirements for any auto-
mated record `keeping systems. System validation and software validation should demonstrate that
all Part 11 requirements have been met.

Computers and automated equipment are used extensively throughout all aspects of medical
device design, laboratory testing and analysis, product inspection and acceptance, production and
process control, environmental controls, packaging, labeling, traceability, document control, com-
plaint management, and many other aspects of the quality system.

Increasingly, automated plant floor operations can involve extensive use of embedded systems
in programmable logic controllers, digital function controllers, statistical process control, supervisory
control and data acquisition, robotics, human-machine interfaces, input/output devices and computer
operating systems.

Software tools are frequently used to design, build, and test the software that goes into an auto-
mated medical device.

Many other commercial software applications, such as word processors, spreadsheets, data-
bases, and flowcharting software are used to implement the quality system.

All of these applications are subject to the requirement for software validation, but the valida-
tion approach used for each application can vary widely.

Whether production or quality system software is developed in-house by the device manufac-
turer, developed by a contractor, or purchased off-the-shelf, it should be developed using the basic
principles outlined elsewhere in this guidance.

The device manufacturer has latitude and flexibility in defining how validation of that software
will be accomplished, but validation should be a key consideration in deciding how and by whom the
software will be developed or from whom it will be purchased.

The software developer defines a life cycle model.
Validation is typically supported by:
− verifications of the outputs from each stage of that software development life cycle;
− checking for proper operation of the finished software in the device manufacturer’s

intended use environment.

