RECYCLIZATION OF 2-IMINO-2H-1-BENZOPYRANS USING NUCLEOPHILIC REAGENTS 3.* REACTION OF 2-IMINOCOUMARIN-3-CARBOXAMIDES WITH o-PHENYLENEDIAMINES AND o-AMINO(THIO)PHENOLS

S. N. Kovalenko, M. V. Vasil'ev, I. V. Sorokina, V. P. Chernykh, A. V. Turov, and S. A. Rudnev

Using o-phenylenediamines, o-aminophenol or o-aminothiophenol, 2-iminocoumarin-3-carboxamide can be recyclized to the corresponding 3-(1H-benzimidazol-2-yl), 3-(benzoxazol-2-yl), or 3-(benzothiazol-2-yl) coumarins. An alternative synthesis has been carried out and an analytical comparison of the synthetic routes made.

In previous publications we have described recyclization processes for 2-iminocoumarin-3-carboxamides which can give N-benzoylamidrazones of coumarin-3-carboxylic acids, 3-(1,3,4-oxadi-, thiadi-, and triazol-2-yl)coumarins [1], and 3-(1,1-dioxo-2H-benzo-1,2,4-thiadiazin-3-yl)coumarins [2]. Continuing this investigation we have studied the reaction of 2-iminocoumarin-3-carboxamides with o-phenylenediamines, o-aminophenol, and o-aminothiophenol.

It was found that refluxing 2-iminocoumarins with o-phenylenediamines, o-aminophenol, or o-aminothiophenol in butan-1-ol gives, respectively, 3-(1H-benzimidazol-2-yl), 3-(benzoxazol-2-yl), or 3-(benzothiazol-2-yl)coumarins IIIa-j (see Scheme 1).

We had previously shown that reaction of 2-iminocoumarins with primary amines gave high yields of 2-N-R-substituted iminocoumarins [3]. In the present case it might be expected that 2-(N-[o-amino(hydroxy, mer-capto)phenyl]imino)coumarins A would be formed. However, as shown by spectroscopic investigation (Tables 1 and 2), this reaction does not stop at the stage of formation of the 2-N-R-iminocoumarins (A) but goes further via a recyclization step to give the 3-heterylcoumarins IIIa-j. In the PMR spectra of the products IIIa-j (Table 2) the signals of the non equivalent NH₂ protons of the carbamide group at 8.20-8.40 and 7.45-7.65 ppm have disappeared and, in the case of the benzimidazole derivatives IIIa-e, a singlet for the NH proton appears at 12.31-12.60 ppm appears. A singlet signal for the proton at position 4 of the coumarin is seen at 9.00-9.70 ppm. The IR spectra of these compounds (Table 1) show an intense lactone C=O stretching band at 1726-1674 cm⁻¹. Compounds IIIa-e show a broad NH band at 3354-3262 cm⁻¹. In addition, 3-(1H-benzimidazol-2-yl), 3-(benzoxazol-2-yl), and 3-(benozthiazol-2-yl) coumarins IIIa-j have UV spectra which are typical of 3-heterylcoumarins [1] and have marked fluorescence properties.

The reaction course indicated can be explained via formation in the first stage of the 2-N-R-iminocoumarin A (which is subsequently recyclized through attack of a second nucleophilic center (OH, NH₂, SH) at the carbon atom of the C=N bond) followed by opening of the "iminolactone" ring and then closing of the coumarin ring.

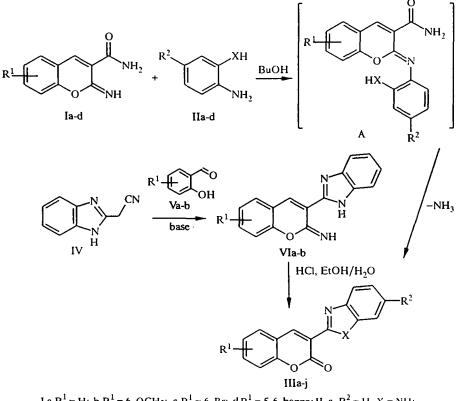
During the reaction of 2-iminocoumarin-3-carboxamide with o-phenylenediamine there is also formed in 5-10% yield 2-(2-hydroxyphenyl)benzimidazole which was isolated from the basic recyclization product via chromatography of the reaction medium and was identified by a mass spectrometric method. The formation of the same product was also noted when fusing the unsubstituted coumarin with o-phenylenediamine [4].

^{*}For Communication 2 see [2].

Ukraine Pharmaceutical Academy, Khar'kov 310002. E-mail: kosn@ukrfa.kharkov.ua. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 12, pp. 1664-1667, December, 1998. Original article submitted December 7, 1997.

Com-	Empirical	Found <u>,</u> % / Calculated, %		IR spectrum	UV spectrum (ethanol), λ _{max} ,	Mp, ℃	Yield, %	
pound	formula	N	s	(KBr), cm ⁻¹	nm (ε , mo! cm ⁻¹ l^{-1})		(method)	
IIIa	C16H10N2O2	<u>10.66</u> 10,68	_	3327 (NH) 1710 (C-O) 1608 (C-C	210 (47600) 240 (12300) 275 (18500) 284 (6300) 365 (20900)	338339	75(A) 71(B)	
ШЪ	C17H12N2O3	<u>9,55</u> 9,58	_	3336 (NH) 1701 (C=O) 1574 (C=C)	219 (41900) 273 (7700) 287 (5700) 389 (2080)	203204	81 (A) 69(B)	
IIIc	C16H9BrN2O2	<u>8,19</u> 8,21	_	3354 (NH) 1706 (C-O) 1598 (C-C)	217 (41900) 273 (8030) 373 (22500)	276277	69	
IIId	C17H11CIN2O3	<u>8.36</u> 8,37	_	3334 (NH) 1699 (C-O) 1570 (C-C)	210 (71700) 281 (12000) 390 (32000) 483*	273274	50	
IIIe	C ₂₀ H ₁₁ ClN ₂ O ₂	<u>8,10</u> 8,08	_	3262 (NH) 1674 (C-O) 1570/1601 (C-C)	220 (58900) 408 (29100) 460*	280281	35	
IIIf	C17H11NO4	<u>4.80</u> 4,78	_	1726 (NH) 1570/1535 (C=C)	209 (29300) 230 (25100) 332 (16600) 381 (13700) 481*	231234	60	
IIIg:	C20H10NO3	<u>4,50</u> 4,48	_	1718 (C=O) 1603/1562 (C=C)	215 (37900) 233 (40100) 260 (14300) 400 (23600) 485*	263264	71	
IIIh	C16H9NO2S	<u>5.03</u> 5,01	<u>11.45</u> 11,48	1718 (C–O) 1603/1562 (C–C)	218 (39700) 250 (9510) 291 (6220) 363 (26700) 479*	210211	63	
IIIi	C17H11NO3S	<u>4.55</u> 4,53	<u>10.35</u> 10,37	1715 (C - O) 1570 (C - C)	222 (39800) 295 (6150) 359 (18600) 393 (19500) 481*	215217	70	
IIIj	C20H11NO2S	<u>4.23</u> 4,25	<u>9.70</u> 9,73	1724 (C=O) 1562/1513 (C=C)	222 (54700) 263 (37900) 412 (29000) 482*	274276	61	
VIa	C16H11N3O	<u>16.05</u> 16,08		3168 (NH) 1648(C=N) 1591/1536 (C=C)	242 (41300) 242 (39800) 251 (36700) 272 (35300) 282 (27500) 363 (26500)	265268	85	
VIb	C17H13N3O2	<u>14,40</u> 14,42		3256 (NH) 1652(C=N) 1612/1532 (C=C)	233 (42700) 242 (41200) 272 (36600) 352 (28400) 393 (25400) 414 (24100)	225227	78	

T/	ABLE 1.	Parameters	for	Coumarins	IIIa-j	and	2-Iminocoumarins V	Лa,b	


*Luminescence, λ_{max} , nm, in ethanol.

Compound	1H. s, 4-H	1H, S, NH	Harom, M	Other protons	
IIIa	9,16	12,55	7,208,15 (8H)	_	
IIIb	9,12	12,60	7,307,61 (7H)	3,85 (3H, s, CH ₃)	
IIIc	9,08	12,56	7,157,90 (7H)	_	
IIId	9,10	12,56	7,257,70 (6H)	3,85 (3H, s, CH ₃)	
Ille	9,70	12,31	7,158,65 (9H)	_	
IIIf	9,00	_	7,307,90 (7H)	3,85 (3H, S, CH ₃)	
IIIg	9,49	_	7,458,70 (10H)	_	
IIIh	9,23	_	8,008,30 (8H)	-	
IIIi	9,20		7,258,21 (7H)	3,84 (3H, S, CH ₃)	
IIIj	9,01	_	7,358,00 (10H)	_	
Vla	8,54	12,50	6,907,81 (8H)	-	
VIb	8,54	12,75	7,007,80 (7H)	3,80 (3H, s, CH ₃)	

TABLE 2. Chemical Shifts in the PMR Spectra of Coumarins IIIa-j and 2-Iminocoumarins VIa,b, ppm in DMSO-D6

In order to confirm the structure of the reaction product we have carried out an alternative synthesis of 3-(1Hbenzimidazol-2-yl)coumarins IIIa-b via Knoevenagel condensation of 2-(1H-benzimidazol-2-yl)acetonitrile IV with salicylaldehydes Va-b and subsequent acid hydrolysis of the 3-(1H-benzimidazol-2-yl)-2-iminocoumarins VIa-b formed.

Scheme 1

I a $R^1 = H$; b $R^1 = 6$ -OCH₃; c $R^1 = 6$ -Br; d $R^1 = 5$, 6-benzo; II a $R^2 = H$, X = NH; b $R^2 = 4$ -CI, X = NH; c $R^2 = H$, X = O; d $R^2 = H$, X = S; III a $R^1 - R^2 = H$, X = NH; $bR^1 = 6$ -OCH₃, $R^2 = H$, X = NH; $CR^1 = 6$ -Br, $R^2 = H$, X = NH; $dR^1 = 6$ -OCH₃, $R^2 = 6$ -Cl, X = NH; $eR^1 = 5,6$ -benzo, $R^2 = 6$ -Cl, X = NH; $f^2R^1 = 6$ -OCH₃, $R^2 = H$, X = 0; $gR^1 = 5,6$ -benzo, $R^2 = H$, X = 0; $hR^1 = R^2 = H$, X = S; $iR^1 = 6$ -OCH₃, $R^2 = H$, X = S; $jR^1 = 5,6$ -benzo, $R^2 = H$, X = S; $VaR^1 = H;$ $bR^1 = 5$ -OCH₃; $VIaR^1 = H;$ $bR^1 = 5$ -OCH₃

Hence, through reaction with o-phenylenediamine or o-amino(thio)phenols, 2-iminocoumarin-3-carboxamides are recyclized to 3-(1H-benzimidazol-2-yl), 3-(benzoxazol-2-yl), and 3-(benzothiazol-2-yl)coumarins and this can serve as an alternative to their preparation via the Knoevenagel method.

EXPERIMENTAL

IR spectra of the synthesized compounds were recorded on a Specord M-80 spectrophotometer for KBr tablets. UV spectra were measured on a Specord M-40 spectrophotometer using ethanol solvent. Luminescence spectra were recorded on a Hitachi F-4010 instrument using ethanol solvent. PMR spectra were taken on a Bruker WP-200 instrument with DMSO-D₆ solvent and TMS internal standard. Mass spectra were recorded on a Finnigan MAT-4615B instrument with ballistic sample heating and an ionization energy of 70 eV.

General Method for Preparing 2-Iminocoumarin-3-carboxamides Ia-d. Equimolar amounts (0.01 mole) of the corresponding salicylaldehyde and cyanoacetic acid amide were dissolved in the minimum quantity of ethanol and a few drops of piperidine added. The solution was stirred vigorously. The precipitate was filtered, dried, and crystallized from a suitable solvent.

General Method for Preparing 3-(1-H-benzimidazol-2-yl)coumarins, 3-(Benzoxazol-2-yl)coumarins, and 3-(Benzothiazol-2-yl)coumarins (IIIa-j). A. A mixture of the corresponding 2-iminocoumarin-3-carboxamide (Ia-d, 0.01 mole) and o-phenylenediamine (o-aminophenol, o-aminothiophenol) (IIa-d, 0.01 mole) was dissolved in the minimum amount of butan-1-ol and refluxed using a reflux condenser for 1-1.5 h. The reaction was accompanied by evolution of ammonia. The precipitate was filtered, dried, and crystallized from a suitable solvent.

General Method for Preparing 2-Imino-3-(1H-benzimdazol-2-yl)coumarins (VIa,b). 2-Benzimidazolylacetonitrile (0.01 mole) dissolved in the minimum amount of propan-2-ol was added to a solution of the corresponding salicylaldehyde (Va,b, 0.01 mole) in propan-2-ol (10 ml). The product was heated and piperidine catalyst (0.01 ml) was added. Heating was stopped and the precipitated iminocoumarin was filtered and recrystallized from a suitable solvent.

General Method for Preparing 3-(1H-benzimidazol-2-yl)coumarins (IIIa,b) by Hydrolysis of VIa,b. B. To the corresponding 2-imino-3-(1H-benzimidazol-2-yl)coumarin (0.01 mole) there were added ethanol (10 ml), water (10 ml), and concentrated HCl (5 ml) and the product was heated. The precipitate was recrystallized from a suitable solvent.

REFERENCES

- 1. S. N. Kovalenko, V. A. Zubkov, V. P. Chernykh, A. V. Turov, and S. M. Ivkov, Khim. Geterotsikl. Soedin., No. 2, 186 (1996).
- 2. S. N. Kovalenko, V. P. Chernykh, A. E. Shkarlat, I. V. Ukrainets, V. I. Gridasov, and S. A. Rudnev, Khim. Geterotsikl. Soedin., No. 7, 916 (1998).
- 3. V. A. Zubkov, S. N. Kovalenko, V. P. Chernykh, and S. M. Ivkov, Khim. Geterotsikl. Soedin., No. 6, 760 (1994).
- 4. I. I. Tkach and E. V. Luk'yanets, Khim. Geterotsikl. Soedin., No. 8, 1053 (1992).