2024.10.04-06

前沿轉譯與應用

第39屆 **第39屆** 第24屆 **天然藥物研討會** 台灣自由基學會學術研討會 聯合會暨國科會藥學及中醫藥學學門成果發表會 Cutting Edge, Translation and Application-Joint Symposium of the 39th SNP and 24th SFRR-Taiwan

摘要集 Abstract Book

9 **9 9 0** 9 **8** 9

天然物化學組

Natural Products Chemistry

2024 Cutting Edge, Translation and Application-Joint Symposium of the 39th SNP and 24th SFRR-Taiwan

Poster No.	Paper No.	First Name	Last Name	Abstract Title
PC-45	15880225	Ming-Vi	Lee	Effects of okara as a substrate for fungal liquid-state
10-45	13000223	TVIIIIg- I I	Lee	fermentation on protein production
PC-47	15880234	Chih-Hsuan	Jao	Investigation of Bioactive Constituents from the Calyx of Diospyros kaki L.f.
				Multifunctional Properties of Tectona grandis L.f.
PC-48	15880241	Sasimontra	Timjan	Extract: Inhibition of Steroid 5α -Reductase,
				Antioxidant Capacity, and Cytotoxicity
PC-49	15880246	Tzu-Yi	Ke	sclerotiorum through OSMAC approaches
				The Phytochemicals Networking of KBCC Nepenthes
PC-50	15880248	Szu-Yin	Yu	Plants
Dati	1.50000.40	TT		Inflammatory Activities of Phytochemical
PC-51	15880249	Kartiko Arif	Purnomo	Constituents from Indonesian Bajakah Tampala
DC 52	15000260	Thur	Dui	(Spainolobus Intoralis Hassk.) Stems
PC-32	13880200	Inuy	Dui	Countaring from the higgorited agents from the heatering
PC-53	15880261	Tzu-Ching	Vao	which were isolated from Sri Lanka mangrove plants
10.55	15000201	124 Ching	100	with antifungal activities
				Phytochemical Investigation and Anti-COVID
PC-54	15880271	Thiyagarajan	Raviraj	Screening of Compounds from Bischofia javanica
				Leaves
PC-55	15880272	Wen-Xuan	Pan	Investigation on the anti-inflammatory components
				from the flowers of Delonix regia
PC-56	15880285	Jia-Hua	Liang	Main Bioactive Components and Their Biological
				Assessment of antifungal activity of Streptomyces sp
PC-57	15880289	Hao-Yung	Wang	CRREB63 to wood decaying fungi
				Variety Difference and the Effects of Seeding Time on
PC-58	15880291	Tung	Hsieh	the Composition of Functional Compounds of the
		-		Fruits of Taiwanese Roselle
				Quantitation of the Acetogenin concentrations at
PC-59	15880294	Tung-Ying	Wu	different maturation of the Soursop Leaves and its
				sub-chronic toxicity study
				Searching Antimicrobial Compounds from the
PC-60	15880066	Chih-Huan	Lin	Endophytic Fungi from Leaves of Mangrove Plants in
				Sri Lanka
				Evaluation on Inhibitory Activity of PGF2α-Induced
PC-61	15880303	Vi Dei	Lee	Extracellular Ca2+ Influx in HUtSMCs and Chemical
10-01	13880303	11-1 01	Lee	Composition Analysis of Lycopodium serratum
				Thunb. var. longipetiolatum Spring.
				Molecular Networking-Driven OSMAC Approach for
PC-62	15880219	Hung-Yi	Chen	the Discovery of Anti-Lymphangiogenic Fermentation
				Products from Endophytic Aspergillus niger ST17
				An efficient extraction method of allergenic aromatic
PC-63	15880329	Hsiao-Chiao	Hung	aldehydes for essential oils by eco-friendly solvents
				coupled with GC-FID
PC-64	15880363	Shih-Che	Lin	Medicinal Chemistry and Analytical Core Facilities
PC-65	15880398	Hsiao-Yang	Hsi	Chemical constituents from marine medicinal brown
		6		alga-derived Scytalidium lignicola SC228
				auantitative NMR for the optimum extraction
PC-66	15880405	Chi-Ying	Li	characterization, and quantitation of Antrodia
				cinnamomea triterpenoids

PC-54

Phytochemical Investigation and Anti-COVID Screening of Compounds from *Bischofia javanica* Leaves

Thiyagarajan Raviraj^{a#}, Tzu-Huan Hung^{b=}, Vidya Febrasca Tenderly^a, Sedin Renadi^a, Riong Seulina Panjaitan^a, Yen Chi Loo^a, Ashutosh Kumar Shukla^a, Harshita Tiwari^c, Ujala Upadhyaya^a, Olha Mykhailenko^d, Mohamed El-Shazly^e, Fang-Rong Chang^a, Tsong-Long Hwang^{f*}, Michal Korinek^{a*}

^a Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.

^b Crop Genetic Resources and Biotechnology Division, Taiwan Agricultural Research Institute, Taichung, 41362, Taiwan.

^c Insilico Drug Discovery Lab, Drug Chemistry Research Center, Kanadia Road, Indore, Madhya Pradesh 452005, India.

^d Department of Pharmaceutical Chemistry, National University of Pharmacy of Ministry of Health of Ukraine, Kharkiv, Ukraine.

^e Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 11566, Abassia, Cairo, Egypt.

^f Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.

[#]main presenter, ⁼equal contribution, ^{*}correspondence.

The global impact of the coronavirus pandemic on human health, economy, and society has been profound. In this context, the search for potent anti-viral drugs has become an urgent necessity. *Bischofia javanica*, a plant species of the family Phyllanthaceae, has a rich traditional history of treating chronic conditions such as inflammation, tuberculosis, ulcers, fractures, and eczema. Furthermore, previous research studies have reported its potential secondary metabolite activities, such as anti-diabetic, anti-venom, sedative, and anti-cancer activities. This study, therefore, was aimed at isolating, determining the structure, and evaluating the bioactivities of *Bischofia javanica* leaves, including their potential as anti-COVID, anti-inflammatory, and cytotoxic agents, offering a ray of hope in the fight against the pandemic.

The strength of our research lies in our collaborative efforts. Pseudovirus assay (Omicron) was conducted for 75% aqueous methanol (75% MeOH) extract, and the results showed an IC50 value of $1.44 \pm 0.02 \mu g/mL$. Moreover, anti-inflammatory in human neutrophils were evaluated. The UPLC-HRMS/MS analysis of 75% MeOH extract revealed the presence of eight compounds, namely, gallic acid, hydroxybenzoic acid, methyl gallate, corilagin isomer,

2024 Cutting Edge, Translation and Application-Joint Symposium of the 39th SNP and 24th SFRR-Taiwan

geraniin, ellagic acid, vitexin. Further, we conducted molecular docking studies to predict the binding mode and affinity of the compounds to the SARS-CoV-2 spike protein. This was followed by molecular dynamics simulations to study the behavior of the protein-ligand complex over time. Geraniin and corilagin bound well to the binding site with binding affinities of -7.0 and -6.1 kcal/mol and promising dynamics. In collaboration with researchers from Ukraine, we also analyzed plants of the genus *Epilobium* that are widely distributed in European countries and have a similar composition, including gallic acid, tannins, and flavonoids.

Keywords: tannins; phenolics; Jia-Dong; anti-COVID; molecular docking; dynamics