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ANNOTATION 

An in silico study of the metabolism and toxicity of the new anticonvulsant 

Epirimil was conducted. Biotransformation pathways involving CYP450 were 

identified: sulfur oxidation, N-oxidation, acetamide hydrolysis, O-dealkylation, and 

glucuronidation, with no toxic metabolites predicted. The compound belongs to 

toxicity class IV. The thesis consists of 4 chapters, general conclusions, and a 

reference list (71 sources), presented on 44 pages and containing 11 figures. 

Keywords: pyrimidine, anticonvulsant, metabolism, in silico, CYP450, 

toxicity. 

 

АНОТАЦІЯ 

Проведено in silico дослідження метаболізму та токсичності нового 

антиконвульсанта Епірімілу. Виявлено шляхи біотрансформації за участі 

CYP450: окиснення Сульфуру, N-окиснення, гідроліз ацетаміду, O-

деалкілування, глюкуронування,  а також відсутність токсичних метаболітів. 

Сполука відноситься до IV класу токсичності. Робота: 44 стор., 11 рисунків, 71 

джерело. Робота складається з 4 розділів, загальних висновків та списку 

використаної літератури (71 джерело), викладена на 44 сторінках, містить 11 

рисунків. 

Ключові слова: піримідин, антиковульсант, метаболізм, in silico, 

СYP450, токсичність 
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INTRODUCTION 

 

Relevance of the topic. Epilepsy remains one of the most prevalent neurological 

disorders worldwide, with more than 50 million people affected globally, according 

to WHO estimates. Despite the availability of a wide range of antiepileptic drugs 

(AEDs) with diverse mechanisms of action, effective seizure control is achieved in 

only 65–70% of patients [1]. This underscores the need for the development of novel 

multitarget compounds with improved efficacy and safety profiles. At the National 

University of Pharmacy, a promising anticonvulsant molecule — N-(3,4-

dimethoxyphenyl)-2-([2-methyl-6-(pyridin-2-yl)pyrimidin-4-yl]thio)acetamide — 

was synthesized. It demonstrated broad-spectrum activity in various seizure models 

along with favourable pharmacological properties and low toxicity. 

The investigation of metabolic pathways of novel bioactive compounds is a crucial 

step in the preclinical development of pharmaceuticals, as metabolism significantly 

affects a drug’s pharmacokinetics, bioavailability, efficacy, and safety. Inadequate 

understanding of biotransformation mechanisms can lead to the emergence of 

undesirable toxic effects or insufficient therapeutic outcomes during clinical trials, 

often resulting in the discontinuation of drug development. 

Therefore, early prediction of metabolic transformations – especially using in 

silico methods – enables the identification of potentially harmful metabolites, the 

assessment of involvement of key enzymes such as CYP450 isoforms, and the 

evaluation of the need for molecular structure optimization before initiating costly in 

vitro and in vivo experiments. This approach improves the likelihood of successful 

progression through further development stages, optimizes resource utilization, and 

contributes to the creation of safer and more effective therapeutic agents. 

To reduce the risk of failure at the clinical trial stage due to unfavourable metabolic 

characteristics, it is essential to apply reliable methods for predicting 

biotransformation, including in silico, in vitro, and in vivo approaches. Given that 

experimental techniques often require substantial time, resources, and specialized 

equipment, the importance of in silico prediction as an initial screening tool is steadily 
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increasing. A deep understanding of the enzymatic modifications a molecule 

undergoes is fundamental to the rational design of safe and efficacious drug 

candidates. 

The purpose of the study Prediction of possible biotransformation pathways 

and toxicological profile of a potential anticonvulsant N-(3,4-dimethoxyphenyl)-2-

([2-methyl-6-(pyridin-2-yl)pyrimidin-4-yl]thio)acetamide (Epirimil).  

In order to achieve the objective, the following tasks had to be accomplished: 

• To analyze the scientific literature on the epidemiology of epilepsy, side 

effects of existing AEDs, as well as the main mathematical, statistical 

methods and web resources used to predict possible pathways of xenobiotics 

metabolism in the human body. 

• Based on the results of the analysis, select the most effective web tools for 

in silico studies of drug metabolism and toxicological profile. 

• To perform computer predictions of possible biotransformation pathways of 

the anticonvulsant Epirimil.  

• Determine the toxicity of the anticonvulsant Epirimil by in silico method 

and compare with the results in vivo. 

• Systematize the data obtained from different programs and formulate 

conclusions about the main directions of Epirimil biotransformation 

The object of the study. Prediction of chemical biotransformation of a potential 

anticonvulsant agent. 

The subject of the study. Metabolites of N-(3,4-dimethoxyphenyl)-2-([2-methyl-

6-(pyridin-2-yl)pyrimidin-4-yl]thio)acetamide (Epirimil). 

The methods of the study. Analysis and sorting of scientific literature on the 

research topic. BioviaDraw2021 was used to visualize the structure and create Smiles 

string. Online programs XenoSite were used to predict the direction of Epirimil 

metabolism. The ProTox program was used to determine the toxicity of the 

anticonvulsant Epirimil. Visualization of the predicted metabolic pathways was 

performed using BioviaDraw2021. 
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The practical value of the results. The in silico prediction of possible 

biotransformation pathways and toxicity profile of the promising anticonvulsant 

Epirimil was performed. The results of the prediction show that the -(3,4-

dimethoxyphenyl)-2-([2-methyl-6-(pyridin-2-yl)pyrimidin-4-yl]thio)acetamide 

(Epirimil) can be biotransformed by the cytochrome P450 enzyme system without the 

formation of toxic metabolites – epoxides. The identified potential metabolites will 

be the basis for further in vivo studies and will help in the interpretation of the data 

on metabolic transformations of Epirimil. 

Elements of scientific research. For the first time, in silico calculation and 

prediction of the directions of chemical biotransformation of a new aniconvulsant 

with a multifactorial mechanism of action and low toxicity were performed. 

Structure and scope of the qualification work. 

The paper consists of an introduction, four sections, conclusions, and a list of 

references. The work is presented on 44 pages and contains 11 figures, The list of the 

used literary sources contains 71 titles. 
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CHAPTER 1 

EPILEPSY AND ITS EPIDEMIOLOGY.  

DRUG METABOLISM 

(Literature review) 

 

1.1. Epilepsy and its epidemiology 

 

Epilepsy is a neurological disorder that can occur in people of any age, regardless 

of their geographic location, social status, or ethnic background. Information about 

epileptic seizures has been known since ancient times – they are mentioned in 

Mesopotamian writings and the sacred Indian texts, the Vedas. It is one of the oldest 

known medical conditions, with descriptions dating back as far as 4000 BC. The term 

"epilepsy" comes from the Greek word meaning "sudden attack" or "to be seized." An 

epileptic seizure can present with various symptoms – motor, sensory, psychic, or 

autonomic, and sometimes a combination of them. A seizure is a temporary disruption 

in a person's condition caused by excessive electrical activity in the brain. Seizures 

are classified as either provoked or unprovoked [1]. 

The revised 2014 operational definition of epilepsy by the International League 

Against Epilepsy (ILAE) outlines the following criteria: 

1. The occurrence of two or more unprovoked (or reflex) seizures spaced more 

than 24 hours apart. 

2. A single unprovoked (or reflex) seizure with a high likelihood of recurrence – 

estimated at 60% or more – over the next 10 years, which is similar to the 

recurrence risk following two unprovoked seizures. 

3. A confirmed diagnosis of an epilepsy syndrome [2]. 

Epilepsy is considered resolved in individuals who: 

➢ Previously had an age-related epilepsy syndrome but have now surpassed the 

age range in which it typically occurs, 

➢ Or who have been free from seizures for at least 10 years, including at least the 

last 5 years without the use of anti-seizure medications [2]. 
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A recent study reports that around 70 million people worldwide are living with 

epilepsy, with nearly 90% of those cases occurring in low- and middle-income 

countries. The average prevalence rate in rural areas of these regions is about 1.54%, 

while in urban settings it’s slightly lower at 1.03%. Each year, approximately 2.4 

million new epilepsy cases are diagnosed globally [3]. 

In wealthier nations, between 30 and 50 people per 100,000 develop epilepsy 

annually. However, in less affluent countries, this rate can be up to twice as high. 

Factors contributing to this include a higher risk of infections like malaria and 

neurocysticercosis, more frequent road and birth-related injuries, and limited access 

to quality healthcare and prevention programs [4]. 

According to World Bank classifications, about 90% of people with epilepsy live 

in areas with restricted medical resources. In developed countries, epilepsy affects 

between 4 and 10 individuals per 1,000 people. In contrast, research from developing 

and tropical regions shows significantly higher rates — ranging from 14 to 57 cases 

per 1,000 — which may partly be due to differences in research methods. However, 

in some parts of the world, infections such as neurocysticercosis are common causes 

of epilepsy [5]. 

In high-income countries, epilepsy rates follow a U-shaped distribution, with the 

highest incidence in young children and older adults. Meanwhile, in developing 

nations, the condition is most frequently diagnosed in early adulthood. 

 

1.2  Difficulties of epilepsy therapy 

 

The treatment of epilepsy is a complex and multifaceted process influenced by 

numerous factors. The main challenges in epilepsy therapy include: 

1. Individual characteristics of the disease 

Epilepsy can present in various forms (focal, generalized, syndromic, etc.), 

each requiring a specific therapeutic approach. Additionally, the severity, 

frequency, and type of seizures vary significantly between patients [6]. 



11 

2. Selection of antiepileptic drugs (AEDs). Not all patients respond the same way 

to a particular medication. Often, several drugs or combinations must be tried 

before achieving effective seizure control. Around 30% of patients have drug-

resistant epilepsy, meaning their seizures are not controlled even after trials of 

two or more appropriately chosen and dosed AEDs [6]. 

3. Side effects of AEDs. Antiepileptic medications can cause adverse effects such 

as drowsiness, mood disturbances, cognitive impairment, liver dysfunction, or 

bone marrow suppression, often requiring dose adjustments or drug changes. 

4. Comorbid conditions. Epilepsy is frequently accompanied by other disorders 

such as depression, anxiety, cognitive impairment, or somatic illnesses, which 

complicates both diagnosis and treatment [7]. 

5. Social and psychological aspects. Fear of seizures, social stigma, loss of 

employment, difficulties in education or driving - all significantly impact 

patients’ quality of life and require a comprehensive approach beyond 

pharmacological treatment [8]. 

6. Access to treatment. In low- and middle-income countries, access to quality 

healthcare, modern medications, and diagnostic tools (such as MRI or EEG) is 

often limited, reducing the effectiveness of treatment. 

7. Surgical treatment. For a certain group of patients who do not respond to 

medication, surgical intervention may be considered. However, this requires 

specialized evaluation, careful patient selection, and access to experienced 

neurosurgical centres [9]. 

Therefore, epilepsy therapy demands an individualized approach, interdisciplinary 

collaboration, and often a prolonged period to find the most effective treatment 

strategy. 

Antiepileptic drugs can have a variety of side effects, which depend on the 

specific drug, dose, duration of treatment, and individual sensitivity of the patient. 

The main side effects can be classified into general, cognitive and psychiatric, organ 

toxicity, and allergic/immunologic effects [9]. 

1. General side effects: 
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• Drowsiness, fatigue; 

• Dizziness, unsteadiness while walking; 

• Nausea, vomiting, loss of appetite; 

• Visual disturbances (double vision, blurred vision); 

• Tremor, coordination problems [9]. 

2. Cognitive and psychiatric side effects: 

• Decreased concentration and memory; 

• Slowed thinking; 

• Depression, irritability; 

• Anxiety; 

• In rare cases, suicidal thoughts or behaviour (especially with levetiracetam, 

topiramate, etc.) [10]. 

3. Organ toxicity (damage to internal organs): 

• Hepatotoxicity (liver damage) – typical for valproic acid, carbamazepine, 

phenytoin; 

• Hematological disorders – reduced leukocyte or platelet count, or development 

of aplastic anaemia;  

• Nephrotoxicity (kidney damage) – can occur with long-term use of some drugs; 

• Pancreatitis – rare but possible (especially with valproates) [10, 11]. 

4. Allergic and immune reactions: 

• Skin rashes, hives; 

• Stevens-Johnson syndrome or toxic epidermal necrolysis – life-threatening 

conditions (especially with lamotrigine, carbamazepine); 

• Hypersensitivity reactions, including fever, liver damage, swollen lymph nodes 

(e.g., DRESS syndrome) [11]. 

5. Metabolic disorders: 

• Reduced bone density, osteoporosis (especially with long-term use of 

phenytoin, phenobarbital, carbamazepine); 

• Changes in body weight — weight gain (valproates), weight loss (topiramate); 

• Endocrine disturbances (e.g., menstrual disorders, gynecomastia) [10,11]. 
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6. Teratogenicity. 

Some drugs, especially valproic acid, can cause serious birth defects if used during 

pregnancy [11]. 

 

1.3 Characteristics of drug pharmacokinetics 

Pharmacokinetics is a branch of pharmacology that examines the changes in 

drug concentration within the body’s biological fluids, considering the processes of 

absorption, distribution, metabolism, and excretion. Among these, metabolism and 

elimination play a crucial role, as they largely determine both the duration and 

effectiveness of a drug's action [12,13]. 

Drug metabolism involves a complex series of biochemical transformations 

through which xenobiotics (foreign substances to the body) are converted into more 

polar and water-soluble metabolites, facilitating their efficient elimination from the 

body [12,13]. The liver is the primary site of these metabolic conversions, where 

various enzyme systems operate, with the cytochrome P450 enzyme family playing a 

central role. However, other organs – such as the kidneys, lungs, gastrointestinal tract, 

skin, and placenta – also contribute to the metabolic process [14].  

The resulting metabolites can vary in their biological activity – they may be 

inactive, retain pharmacological activity, or even become toxic. Thus, metabolism not 

only alters the chemical structure of the drug compound but also defines its 

pharmacological profile, duration of action, bioavailability, and potential for adverse 

effects. In some instances, it is the metabolite rather than the parent drug that exerts 

the therapeutic effect — such compounds are known as prodrugs [15].  

Elimination represents the final phase of the pharmacokinetic process, 

responsible for removing drugs and their metabolites from the body. The major routes 

of elimination include renal (via urine), hepatobiliary (via bile), and pulmonary (via 

the respiratory tract), along with less prominent pathways such as perspiration, saliva, 

tears, and breast milk. The rate and efficiency of elimination depend on the 

compound’s physicochemical properties, its degree of plasma protein binding, and 

the functional status of the liver and kidneys [16,17]. 
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Disruptions in drug metabolism and elimination can lead to the accumulation 

of toxic compounds in the body, which may result in adverse effects, hepatic and renal 

toxicity, metabolic imbalances, and drug-induced intoxication [18]. Therefore, a 

thorough investigation of these processes is a mandatory component of the preclinical 

evaluation of novel drug candidates. 

Notably, more than 70% of drugs used in clinical practice undergo metabolic 

transformation [19], highlighting the strategic importance of metabolism in 

pharmaceutical development. These metabolic considerations are critical during the 

design of new dosage forms, the development of prodrugs, and the assessment of 

potential drug–drug interactions [20].  

In recent years, increasing attention has been given to the integration of 

artificial intelligence (AI) technologies in pharmacokinetic research. Modern AI 

systems, equipped with advanced analytical algorithms, are capable of processing 

large volumes of experimental and clinical data, simulating metabolic pathways, and 

predicting key pharmacokinetic parameters – including metabolic rates, enzyme 

involvement, and elimination routes [21]. 

Machine learning–based models enable rapid in silico screening of thousands 

of chemical compounds, allowing for the early identification of potentially hazardous 

or ineffective molecules before the onset of experimental testing. This approach 

significantly reduces research costs, shortens the preclinical development timeline, 

and enhances the overall success rate in drug discovery [21]. 

Furthermore, artificial intelligence offers the capability to simulate drug–drug 

interactions in polypharmacy scenarios, which are increasingly common in modern 

clinical practice. Predicting the metabolic behaviour of drugs while accounting for 

patient-specific characteristics paves the way for personalized pharmacotherapy – a 

cutting-edge direction in contemporary medicine [20]. 

Thus, the investigation of drug metabolism and elimination using innovative 

approaches, particularly AI-based methodologies, represents a crucial area of modern 

pharmaceutical science aimed at improving both the efficacy and safety of 

pharmacological treatments.  
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1.4 Characterization of drug metabolism  

Drug metabolism encompasses a series of biochemical processes through 

which the body modifies xenobiotics for the purposes of detoxification, activation, or 

preparation for excretion. These processes play a central role in determining the 

pharmacokinetic properties of a drug, including its bioavailability, duration of action, 

pharmacological activity, and potential toxicity. 

Biotransformation facilitates the conversion of drug compounds into more 

hydrophilic metabolites, which promotes their subsequent elimination. In 

pharmacology, metabolism is generally divided into two main stages – Phase I and 

Phase II – which can occur sequentially, simultaneously, or even in reverse order, 

depending on the properties of the substrate [16, 23]. A generalized scheme 

illustrating the steps involved in Phase I and Phase II metabolism is presented in 

Figure 1.1. 

 

Fig. 1.1 Phase I and Phase II of drug metabolism  

 

Phase I metabolism involves oxidation, reduction, and hydrolysis reactions that 

result in the chemical modification of drug molecules. These transformations 

typically produce more reactive metabolites, which may undergo further conjugation 
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in Phase II or, in some cases, acquire new pharmacological properties on their own. 

The resulting metabolites can be pharmacologically inactive, thereby reducing the 

drug's overall efficacy, or they may exhibit biological activity – occasionally even 

surpassing that of the parent compound. In certain instances, these metabolites can be 

toxic or induce adverse effects, making their identification and characterization 

essential for drug safety assessment [24]. 

The primary enzymes involved in Phase I metabolism are cytochrome P450 

enzymes – a large family of hemoproteins predominantly localized in the liver, 

although they are also found in other tissues such as the intestine, lungs, kidneys, and 

brain. These enzymes mainly catalyze monooxygenation reactions, in which one atom 

of oxygen is incorporated into the substrate and the other is released as water.  

It is known that 57 CYP isoforms are expressed in the human body, but only 

five (1A2, 2C9, 2C19, 2D6, and 3A4) account for approximately 95% of all drug 

metabolism. In particular, the CYP3A4 isoenzyme is the most active in the 

metabolism of a wide range of xenobiotics, including many commonly used 

pharmaceutical drugs, and is thus of particular interest in the study of drug interactions 

and individual variations in therapeutic responses [25].  

Phase II of metabolism is characterized by conjugation reactions, where polar 

endogenous compounds, such as glucuronic acid, sulfate groups, amino acids, or 

glutathione, are attached to molecules that have already been modified in Phase I. 

These reactions serve as a detoxification mechanism, as conjugated metabolites are 

generally less toxic and more water-soluble than their precursors. Due to their 

increased hydrophilicity, these compounds are more easily excreted from the body, 

primarily via the kidneys (in urine) or through bile from the liver. Thus, Phase II plays 

a critical role in completing the biotransformation of xenobiotics, reducing the risk of 

their accumulation and toxicity [25].   

The most significant enzymes of Phase II are UDP-glucuronosyltransferases 

(UGT), which catalyze the attachment of glucuronic acid, sulfotransferases (SULT), 

responsible for sulfation, and glutathione S-transferases (GST), which facilitate 

conjugation with glutathione. These enzymes have a broad substrate specificity and 
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are expressed in various tissues, including the liver, kidneys, gastrointestinal tract, 

and lungs. It is important to note that the effectiveness of Phase II reactions can be 

influenced by genetic polymorphisms, age, sex, health status, and interactions with 

other drugs, which may affect both the pharmacokinetics and pharmacodynamics of 

the drugs. In some cases, metabolites formed during conjugation may retain biological 

activity or even have their own pharmacological effect, which is also considered when 

developing new pharmaceutical drugs [26].  

It should be noted that the rate and efficiency of metabolic processes can vary 

significantly depending on several factors, such as genetic variations, age, sex, liver 

function, comorbidities, diet, and the influence of other medications. Specifically, 

genetic polymorphisms in genes encoding CYP enzymes can lead to different 

phenotypes of metabolizes, including fast or slow metabolizes, which significantly 

affect the effectiveness and safety of pharmacotherapy [27].  

A particular emphasis is placed on studying the inhibition and induction of 

metabolic enzymes, as this underlies numerous drug interactions. CYP inhibitors can 

decrease the metabolism rate of co-administered drugs, increasing their plasma 

concentration and the risk of toxicity. In contrast, inducers accelerate metabolism, 

which may reduce the therapeutic effectiveness of the drugs. These aspects are 

critically important in polypharmacy and in the development of new pharmacological 

agents [28]. 

To optimize the process of developing new drugs at the preclinical stage, 

enzymatic studies are actively used, which allow: 

➢ determining the metabolic stability of molecules, 

➢ quantitatively assessing and identifying the main metabolites, 

➢ establishing the primary metabolic pathways, 

➢ predicting potential drug interactions [29]. 

In modern conditions, particular attention is given to information technologies 

and in silico methods, specifically the use of artificial intelligence to predict 

metabolism. Applying these methods allows significantly reducing the time and 



18 

resources needed for investigating new compounds and also increases the accuracy of 

predictions of their pharmacokinetic properties [30, 31].  

In particular, in silico prediction of drug metabolism is usually divided into 

three main areas [32]:  

1. Prediction of the site of metabolism (SOM) – allows for the 

identification of atoms in a molecule most likely to undergo metabolic 

transformation. 

2. Prediction of metabolite structures – is based on simulating phase I and 

II reactions, considering the enzymatic specificity involved. 

3. Prediction of pharmacokinetic parameters, including clearance, half-life, 

and bioavailability, taking into account metabolic pathways [33].  

Integrating these approaches into the preclinical development process helps create 

more effective, safer, and personalized treatment strategies, particularly for chronic 

and polyetiological diseases. [32, 33] 

 

1.5 Predicting of drug metabolism sites 

Site of Metabolism (SOM) refers to the specific position (atom or group) in a 

molecule where a metabolic transformation occurs, such as oxidation or conjugation. 

Predicting the site of metabolism (SOM) is a crucial step in xenobiotic research, as it 

allows for the prediction of potential metabolites that could form in the body. 

Identifying the likely site of metabolic transformation in a molecule's structure 

enables chemists to model potential metabolites based on the location of reactive 

atoms or functional groups [34]. The use of in silico methods to predict SOM and 

corresponding metabolite structures, especially in reactions mediated by CYP450 

enzymes, is an important tool in the early stages of studying metabolic pathways. 

This, in turn, helps improve the safety and efficacy profile of drugs. Several 

specialized programs have been developed for this purpose, capable of modeling 

phase I and II metabolic transformations, including FAME, FAME 2, FAME 3, 

GLORY, GLORYx, BioTransformer, CypReact, CyProduct, PreMetabo, and 

Xenosite [35-40]. 
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The web tool CypReact implements machine learning approaches to predict the 

likelihood of low-molecular-weight compounds interacting with nine key isoforms of 

the CYP system. Random forest models are used for seven isoforms, while ensemble 

models combining RF, support vector machines, logistic regression, and decision 

trees are used for 2C9 and 2D6. Substrate specificity prediction is based on the 

analysis of structural characteristics and physicochemical properties of the molecules. 

To improve the quality of the training dataset, the authors used 679 compounds from 

the XenoSite database and manually gathered an additional 1053 chemical 

compounds that do not interact with CYP. The dataset included drugs, food 

components, pesticides, environmental pollutants, endogenous metabolites, and other 

types of substances. The developed classifiers demonstrated high effectiveness, with 

AUC values ranging from 83–92% [41]. 

Another tool developed by the same research group is CyProduct — an in silico 

platform for predicting CYP-mediated metabolism products. It consists of three 

interrelated modules [42-43]: 

1. CypReact – predicts whether a compound can undergo a reaction with a 

specific CYP isoform; 

2. CypBoM Predictor – identifies the "binding site" of the reaction, i.e., the 

chemical bonds that are subject to transformation; 

3. MetaboGen – generates structures of possible metabolites based on the 

predicted binding site [42-43].  

CyProduct covers nine major CYP isoforms: 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 

2D6, 2E1, and 3A4. A unique feature of CypBoM is the introduction of the concept 

of "metabolism bond" – an expanded version of the "site of metabolism," which 

identifies not only individual atoms but also entire chemical bonds that are modified 

during the reaction. A specialized dataset containing 1845 CYP-mediated phase I 

metabolic reactions was created for model training. The prediction accuracy of 

reactive bonds, assessed using the Jaccard index, ranged from 0.380 to 0.452 for all 

nine isoforms, indicating higher accuracy compared to alternative tools – specifically, 

0.13 higher than FAME 2 and 0.12 higher than FAME3 [43]. 
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In conclusion, CyProduct demonstrates superior performance in predicting 

metabolites, surpassing other well-known software products such as ADMET 

Predictor, GLORY, and BioTransformer. Specifically, for a test set of 68 CYP 

substrates, CyProduct's performance was on average 200% higher. Compared to 

BioTransformer, the advantage was about 30%. Thanks to its accuracy, innovative 

approach to determining sites of metabolism, and modern architecture, CyProduct is 

one of the newest and most effective tools for predicting metabolic transformations 

[43]. 

The latest version of the software tool, GLORYx, has significantly improved 

previous approaches to predicting drug metabolism by integrating the determination 

of sites of metabolism (SOM) with reaction rules to predict both phase I and phase II 

transformations. Unlike previous versions, GLORYx implements a comprehensive 

strategy that combines machine learning with expert knowledge of biotransformation 

reactions. To identify the most likely sites of metabolism, the FAME 3 model is used, 

trained based on machine learning and working with a SOM dataset that includes 

1748 parent molecules sourced from the MetXBioDB database [40, 42]. 

The FAME 3 model is based on the Random Forest method and uses circular 

atomic descriptors combined with 15 key two-dimensional descriptors from the 

Chemistry Development Kit to accurately predict the likelihood of a metabolic 

reaction at a specific position in the molecule. As a result, GLORYx can generate 

potential metabolites based on the predicted sites, taking into account typical 

biotransformation patterns [39]. 

The main reason for this is the limited number of publicly available and reliably 

annotated data on the metabolism of small molecules, which limits the accuracy and 

generalizability of predictions for a wide range of chemical structures. As a result, the 

further development of GLORYx is directly dependent on the enrichment of high-

quality databases that reflect the diversity of metabolic pathways [40]. 

 

1.6 Prediction of cytochrome P450 inhibition 
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Inhibitors of cytochrome P450 enzymes are critical in regulating drug 

metabolism by inhibiting the activity of specific CYP isoforms involved in the 

biotransformation of substrates. This alteration in enzyme activity can lead to changes 

in pharmacokinetic parameters such as bioavailability, half-life, and clearance, and 

may also impact the pharmacodynamic properties of drugs, potentially leading to 

adverse effects or toxicity. Additionally, the rate and extent of CYP-mediated 

metabolism are influenced by several factors, including the use of other medications, 

genetic variations, age, sex, diet, and the overall health status of the individual [46].  

Due to the complexity of these interactions, predicting whether a compound 

will act as a substrate or an inhibitor of CYP is a challenging task, requiring a 

comprehensive analysis of its structural, physicochemical, and biological properties. 

Despite the development of numerous in silico models, the accuracy of these 

predictions remains variable and often requires experimental verification [46]. 

In recent years, significant research has been devoted to predicting inhibitory 

activity against specific CYP isoforms, with many studies showing high accuracy 

rates. Focus has been placed on five major CYP isoforms which are responsible for 

metabolizing most drugs. Several tools have been developed, including DeepCYP 

[44], SuperCYPsPred [45], CYPlebrity [44], iCYP-MFE [46], VirtualRat [33], and 

others which offer effective predictions of small molecule interactions with these 

isoforms [47, 48].  

 

1.7 Predicting of drug elimination 

Drug elimination is a key process in pharmacokinetics, involving the removal 

of active substances from the body either as the unchanged drug or its metabolites 

[17]. This is a complex, multi-step process that includes several primary elimination 

pathways. The most significant pathway is renal, responsible for the excretion of 

predominantly water-soluble compounds. Another important mechanism is biliary 

excretion, which eliminates substances that are poorly absorbed in the gastrointestinal 

tract. Although the contribution from other routes such as the intestines, saliva, sweat, 

breast milk, or lungs is relatively minor, it can have clinical significance. For example, 
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volatile anaesthetics may be actively eliminated through the respiratory system, and 

drugs that pass into breast milk may potentially affect infants [17]. 

When developing new drugs, elimination parameters must be considered, as 

they play a crucial role in determining the safety and effectiveness of therapy. This 

includes toxicological validation, preliminary risk assessment for humans, analysis of 

potential drug interactions, and dosimetry for clinical studies. 

Key pharmacokinetic parameters that characterize the elimination process 

include clearance and half-life (t₁/₂). Clearance (Cl) is defined as the volume of plasma 

from which a drug is removed per unit of time and is measured in l/hour or ml/min 

[49]. Total clearance includes the sum of hepatic, renal, and extra-organ clearance. Its 

value depends on several physiological and pharmacological factors: cardiac output, 

body weight, body surface area, liver and kidney function, the degree of drug binding 

to plasma proteins, concomitant therapies, and the expression levels of metabolizing 

enzymes [50]. 

Since clearance influences bioavailability, dosing, and frequency of drug 

administration, it is one of the most important parameters both in preclinical stages 

and in clinical practice [59]. 

As a result, numerous tools for predicting ADMET parameters have been 

developed, including the FP-ADMET software, which employs machine learning 

algorithms to predict various types of clearance: intrinsic, renal, metabolic intrinsic, 

and human liver microsomal clearance [52]. This tool is built upon the Random Forest 

(RF) algorithm, using molecular fingerprints and databases that include thousands of 

compounds from previous studies [53-55]. For instance, when predicting renal 

clearance, 244 compounds were used, and the FP-ADMET model demonstrated better 

accuracy compared to the Chen et al. model on the same data [56].  

AstraZeneca, based on a large internal dataset of 73,620 compounds, applied 

the SVM algorithm and achieved an RMSE of 0.377 [57]. Modern approaches are 

also actively incorporating deep learning. For example, combining machine learning 

methods with DeepSnap-DL enabled the creation of a new clearance prediction model 
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based on 1545 compounds, achieving an AUC of 94.3% and an accuracy of 87.4% 

[58], which outperforms individual ML or DL models.   

Thus, the development and improvement of clearance prediction models, 

particularly through the integration of classical ML algorithms and modern DL 

architectures, opens up new opportunities for more efficient preclinical drug 

evaluation and optimization of their pharmacokinetic properties 

 

1.8 Databases for metabolism prediction 

Selecting the appropriate database is a crucial step in developing accurate and 

reliable AI-based metabolism and drug elimination prediction models. Achieving 

high efficiency requires considering not only the quantity but also the quality, 

relevance, and completeness of the data. In this context, providing access to reliable 

information is essential for analyzing metabolic pathways, predicting 

biotransformation, and optimizing the pharmacokinetic properties of drugs. Below 

are some of the most widely used databases actively employed in metabolism research 

and drug development: 

• HMDB 5.0 – a large database of low-molecular-weight metabolites found in 

the human body, including information on their chemical and physical 

properties, metabolic pathways, and clinical biomarkers. HMDB contains data 

on over 220,000 metabolites and 8,500 protein sequences [59]. 

• METLIN – f metabolite database containing information on more than 960,000 

compounds. It includes molecular formulas, chemical structures, and biological 

activities of metabolites. METLIN also offers MS/MS data for different 

collision energy values in both positive and negative ionization modes [60]. 

• MetaCyc – database of metabolic pathways and enzymes for various 

organisms. It includes information on 3,085 pathways, 18,785 metabolites, and 

18,391 reactions involved in metabolite biotransformation. It can be used to 

build metabolic models for specific organisms. 

• MetXBioDB – database of metabolic pathways and enzymes for a range of 

organisms, including bacteria, archaea, and eukaryotes. MetXBioDB contains 
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data on more than 2,000 biotransformations, including information on enzyme 

structure and function, as well as reactions and pathways involved in metabolite 

biotransformation [42]. 

• Metabolights – a database that includes information on metabolites, metabolic 

pathways, and metabolic networks of over 27,500 compounds. Metabolights 

also provides tools for data analysis and visualization, as well as resources for 

sharing and reusing metabolic data [61]. 

• KEGG Pathway – a database containing maps and diagrams of metabolic 

networks, as well as information on enzymes and metabolites. It includes 

information on over 17,000 metabolic pathways and more than 22,000 enzymes 

[62].  

• HumanCyc – database of human metabolic pathways, enzymes, and the human 

genome. HumanCyc contains data on reactions and biotransformation 

pathways of metabolites, as well as enzymes and genes involved in these 

processes. It includes data on 28,783 genes and their products, as well as the 

metabolic processes and pathways they catalyze [63]. 

• DrugBank – database of drugs and their targets, including information on drug 

metabolism and pharmacokinetics, as well as enzymes involved in drug 

biotransformation. It contains data on over 500,000 drugs, related targets, 

pathways, and metabolic processes [64]. 

• ChEMBL – a atabase of biologically active molecules, including drugs and 

drug candidates, with information on their activity, targets, and metabolic 

pathways. It contains data on over 2.3 million compounds and their associated 

activity and targets [65]. 

• PubChem – publicly accessible database of chemical structures and their 

associated biological activity, containing information on over 114 million 

compounds, as well as tools for data analysis and visualization [66]. 

• OCHEM – a platform for developing and validating predictive models for 

chemical and biological data. OCHEM includes tools for data preprocessing, 
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feature selection, and model training, as well as a library of pre-trained models. 

It contains over 3.7 million entries for 689 properties [67]. 

• OpenFDA – database of FDA-approved drugs, including information on drug 

labeling, side effects, and clinical trial data. OpenFDA includes tools for data 

analysis and visualization, as well as an API for accessing FDA data [68]. 

Conclusions for Chapter 1 

The development and implementation of advanced methods for predicting drug 

metabolism is a crucial aspect of modern pharmaceutical science and industry. 

Through artificial intelligence technologies, particularly machine learning and deep 

learning, significant progress has been made in predicting pharmacokinetic properties 

such as clearance and metabolism. The integration of classical ML algorithms with 

modern DL architectures allows for the creation of more accurate and reliable models, 

opening new possibilities for optimizing the drug development process. A key stage 

in this process is the selection of the right databases, which provide essential 

information for analysing metabolic pathways, biotransformation, and interactions 

between drugs and their targets. Thus, the development of databases and prediction 

methods are essential steps in improving the effectiveness and safety of drugs. Thanks 

to advanced analysis and modelling tools, the pharmaceutical industry gains a 

powerful instrument for faster and more accurate evaluation of pharmacokinetic 

properties, which, in turn, accelerates the development of new drugs and reduces risks 

in clinical trials. 
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CHAPTER 2 

MATERIALS AND METHODS OF RESEARCH OF N-(3,4-

DIMETHOXYPHENYL)-2-[2-METHYL-6-(2-PYRIDYL)PYRIMIDIN-4-

YL]SULFANYL-ACETAMIDE 

As part of this study, the object of investigation was a new promising 

compound with anticonvulsant activity – N-(3,4-dimethoxyphenyl)-2-[2-methyl-6-

(2-pyridyl)pyrimidin-4-yl]sulfanyl-acetamide, which was provisionally named 

"Epirimil" (Fig. 2.1). The synthesis of this molecule was carried out in the laboratory 

of the Department of Pharmaceutical Chemistry at the National University of 

Pharmacy (NUPh) under the scientific supervision of Doctor of Pharmaceutical 

Sciences, Professor Hanna Severіna [69]. 

 

Epirimil 

The selection of this compound as the object of study was driven by its 

promising pharmacological profile, which includes strong anticonvulsant activity 

demonstrated in various in vivo seizure models and low toxicity. Its biological activity 

is attributed to the presence of biologically active fragments in the structure – 

pyrimidine derivatives and a thioacetamide group – which are known for their ability 

to modulate neurotransmitter system functions. Preliminary preclinical trials showed 

that Epirimil exhibited a high level of anticonvulsant activity compared to reference 

drugs such as phenobarbital, sodium valproate, and carbamazepine. 



27 

During the research, modern methods of pharmaceutical analysis, molecular 

docking, in vitro and in vivo models for testing anticonvulsant activity, as well as 

molecular modeling were used to assess the possible mechanisms of interaction of the 

compound with biological targets involved in the development of seizure conditions. 

 

2.1 Synthesis of N-(3,4-dimethoxyphenyl)-2-((2-methyl-6-(pyridin-2-

yl)pyrimidin-4-yl)thio)acetamide 

 

The synthesis of N-(3,4-dimethoxyphenyl)-2-((2-methyl-6-(pyridin-2-

yl)pyrimidin-4-yl)thio)acetamide was performed in three main stages. 

Step 1. Synthesis of 2-methyl-6-(pyridin-2-yl)pyrimidin-4(3H)-one (2.3) 

Ethyl 3-oxo-3-(2-pyridyl)propanoate (2.2) (1 mol) was dissolved in 100 mL of 

anhydrous methanol. To this solution, a freshly prepared solution of sodium 

methoxide (3 mol in 300 mL of methanol) was added. The reaction mixture was 

stirred for 30 minutes at room temperature (25 °C). Subsequently, amidine 

hydrochloride (2.1) (1.5 mol) was added portionwise over 30 minutes under 

continuous stirring. The mixture was then heated at 80 °C for 8 hours. After 

completion of the reaction, the mixture was cooled to 25 °C, and acetic acid (3 mol) 

was added to neutralize the reaction medium. Methanol was removed under reduced 

pressure using a rotary evaporator. The residue was diluted with 200 mL of distilled 

water and stirred for 30 minutes. The precipitate formed was filtered off, washed three 

times with 100 mL portions of water, and dried under vacuum. Yield: 95%. 

Step 2. Synthesis of 2-methyl-6-(pyridin-2-yl)pyrimidin-4(3H)-thione (2.4) 

2-methyl-6-(pyridin-2-yl)pyrimidin-4(3H)-one (2.3) (1 mol) was suspended in 300 

mL of toluene, and Lawesson’s reagent (1.1 mol) was added. The reaction mixture 

was refluxed with vigorous stirring for 5 hours. After cooling to 25 °C, the formed 

precipitate was filtered, washed with toluene, recrystallized from isopropanol, and 

dried under vacuum. Yield: 84%. 

Step 3. Synthesis of N-(3,4-dimethoxyphenyl)-2-((2-methyl-6-(pyridin-2-

yl)pyrimidin-4-yl)thio)acetamide (2.5) 
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2-methyl-6-(pyridin-2-yl)pyrimidin-4(3H)-thione (2.4) (1 mol) was dissolved 

in 100 mL of dimethylformamide (DMF). Triethylamine (1.1 mol) and 2-chloro-N-

(3,4-dimethoxyphenyl)acetamide (1.1 mol) were added at 25 °C. The reaction mixture 

was stirred vigorously and heated at 60 °C for 5 hours. Upon completion, the mixture 

was cooled to room temperature, and 500 mL of water was added to precipitate the 

product. The solid was filtered, washed with water, and recrystallized from 

isopropanol. Yield: 92%. Melting point: 220–222 °C. 

 

Epirimil

1 step

3 step

2.1

2.2
2.3 2.4

2.5

MeONa/MeOH dry

80 ОС RL, Toluene оt

Et
3
N, DFA, 60 o C

 

Figure 2.1 Scheme of Epirimil synthesis 

 

2.2 Discussion of the results of pharmacological action of Epirimil 

The anticonvulsant potential of N-(3,4-dimethoxyphenyl)-2-((2-methyl-6-

(pyridin-2-yl)pyrimidin-4-yl)thio)acetamide was assessed through extensive in vivo 

studies that adhered to all established guidelines for the preclinical evaluation of 

antiepileptic drugs (AEDs).  Following international standards for the development 

of new AEDs – specifically, the Anticonvulsant Drug Development Program and the 

Epilepsy Therapy Screening Program  – it is essential to investigate the compound's 

efficacy not only against pentylenetetrazole-induced seizures but also in a model of 
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primarily generalized clonic-tonic seizures provoked by electrical stimulation (the 

maximal electroshock seizure test). The seizure mechanism in the MES model 

involves depolarization of neuronal membranes due to sodium ion influx. Screening 

for anticonvulsant efficacy was therefore conducted using both pentylenetetrazole-

induced and MES-induced seizure models [69]. 

Pentylenetetrazole-induced seizures. Experimental animals were administered 

a single intragastric dose of Epirimil (50 mg/kg) or reference compounds – 

lamotrigine ("Lamictal," GlaxoSmithKline) at 20 mg/kg and phenobarbital 

("Phenobarbital IC," Interchem, Ukraine) at 20 mg/kg. Both Epirimil and the 

reference drugs were dissolved in Tween-80 and delivered via a gastric cannula at a 

volume of 0.5 mL/100 g body weight, one hour prior to seizure induction. Control 

animals received an equivalent volume of solvent. Pentylenetetrazole (Sigma, USA) 

was administered subcutaneously as an aqueous solution at a dose of 80 mg/kg. 

Following convulsant administration, each mouse was individually placed in a plastic 

cylindrical container (20 cm in diameter and 35 cm in height) and continuously 

observed for 60 minutes. If no seizures occurred during this period, the latent period 

was recorded as 60 minutes. Anticonvulsant effects were evaluated based on several 

parameters: latency to clonic or tonic seizures, severity of paroxysms (scored), 

duration of the convulsive episode, and mortality rate [69]. 

N-(3,4-dimethoxyphenyl)-2-[2-methyl-6-(2-pyridyl)pyrimidin-4-yl]thio-

acetamide (Epirimil) exhibited strong antiepileptic properties, completely preventing 

seizure onset in the treated animals and demonstrating efficacy comparable to that of 

the reference drug phenobarbital across all measured outcomes (Figure 2.2). 

Fig. 2.2 Indicators of anticonvulsant activity of Epirimil 
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The study was conducted on 40 outbred mice of both sexes, weighing 25–28 g. 

The animals were divided into four groups, with 10 mice in each group. Group 1 

served as the control. Animals in Groups 2, 3, and 4 received intragastric 

administration of compound 2.5 (50 mg/kg), lamotrigine (20 mg/kg) 

(GlaxoSmithKline Pharmaceuticals), and carbamazepine (15 mg/kg) (Novartis), 

respectively. The evaluation of anticonvulsant activity was performed one hour after 

compound administration. Electrically induced seizures were provoked using a Ugo-

Basile ECT 57800 device (Italy) equipped with corneal electrodes. To reproduce the 

MES model, a 50 mA current with a frequency of 50 Hz and a duration of 0.2 seconds 

was applied using sinusoidal stimuli. Electrodes were moistened with a 0.9% sodium 

chloride solution ("ARTERIUM," Ukraine), and a 2% lidocaine hydrochloride 

solution ("EGIS," Hungary) was instilled into the conjunctival sac to minimize 

discomfort [69]. The following parameters were recorded: the number of mice 

exhibiting tonic seizures, total seizure duration, and mortality rate. 

In the MES test, compound 2.5 demonstrated pronounced anticonvulsant 

activity (Figure 2.3), including a reduction in the incidence of electroshock-induced 

seizures to 10%, an 86.9% decrease in seizure duration, and complete prevention of 

hind limb tonic extension in 100% of animals (p < 0.05). 

 

Fig. 2.3 Anticonvulsant activity of Epirimil  in  the MES model 

 

The derivative 2.5 was not inferior in anticonvulsant effect to the comparison 

drug carbamazepine and slightly superior to lamotrigine in all parameters. On the 

background of compound 2.5 administration there were no dead animals, and the total 

duration of convulsive attack was 88.5% shorter (p<0.05) than in animals without 

pharmacological correction. 
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2.3 Study of acute toxicity 

Acute toxicity (LD₅₀ and its confidence interval) was assessed using the method 

of V.B. Prozorovsky as modified by T.V. Pastushenko [52]. The experiment involved 

34 outbred white mice, standardized by body weight (24 ± 3 g), which were divided 

into five groups. The test groups received Epirimil orally at doses ranging from 100 

mg/kg to 1000 mg/kg, dissolved in an appropriate amount of Tween-80. The animals 

were observed over a 14-day period. On the first day, continuous monitoring was 

conducted. Researchers recorded animal behavior and body weight, assessed clinical 

signs of intoxication – general condition, motor activity, respiratory pattern, condition 

of skin and fur, presence of convulsions, food and water intake—and noted the 

number of deaths in each group. 

The results of the acute toxicity study of the compound are presented in Figure 

2.4 

 

Fig. 2.4 LD50 of Epirimil  

 

At higher doses, Epirimil exhibited pronounced hypnosedative effects, 

including respiratory depression and reduced locomotor activity, which progressed to 

a deep narcotic state resulting in animal death. Mortality was recorded within the first 

three days following administration of high doses. Surviving animals regained 

activity within 12 to 24 hours and remained clinically stable over the subsequent 14-

day observation period. No significant differences in food intake or body weight were 

observed compared to the control group. Reflexes remained intact, and no behavioral 

abnormalities or clinical signs of intoxication were detected. The skin remained 

smooth and glossy, with no redness, scaling, cracking, or other visible changes. 

Furthermore, surviving mice showed no statistically significant deviations in body 

weight. 
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The calculated LD₅₀ value for compound 2.5 administered orally in white mice 

was 522.0 mg/kg (confidence interval: 432 – 613 mg/kg). According to the Hodge 

and Sterner toxicity classification system, Epirimil falls under Class IV – low-toxicity 

substances. 

 

Conclusions to Chapter 2 

1. The methods for the synthesis of the studied compound, N-(3,4-

dimethoxyphenyl)-2-((2-methyl-6-(pyridin-2-yl)pyrimidin-4-

yl)thio)acetamide (Epirimil), have been described and characterized in detail. 

The synthetic route allows for the efficient preparation of the target molecule 

with a satisfactory yield and purity, which is essential for further 

pharmacological evaluation. 

2. The pharmacological potential of N-(3,4-dimethoxyphenyl)-2-((2-methyl-6-

(pyridin-2-yl)pyrimidin-4-yl)thio)acetamide has been substantiated, 

supporting its consideration as a promising active pharmaceutical ingredient 

(API). Preliminary biological studies indicate its anticonvulsant activity, 

combined with a low level of acute toxicity and a favourable safety profile. 

These findings justify the need for further in-depth pharmacological 

investigations to fully assess its therapeutic potential and mechanism of action. 
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CHAPTER 3 

PREDICTION OF EPIRIMIL METABOLISM USING XENOSITE WEB 

TOOLS 

3.1. List of computer programs used for biotransformation analysis 

Several tools can be used to predict P450 metabolism sites and the metabolic 

properties of molecules. These tools help obtain forecasts that aid in understanding 

how a molecule may be metabolized. 

1. XenoSite – one of the most popular tools for predicting sites of metabolism 

(SOMs) in molecules. It uses machine learning based on experimental data. 

XenoSite also allows for isoform-specific P450 predictions, which is useful for 

more accurate analysis when specific enzymes (e.g., CYP3A4, CYP2D6) are 

involved. XenoSite predicts which atoms in a molecule are likely to undergo 

metabolism by cytochrome P450 (CYP450) enzymes. It identifies SOMs – 

regions of the molecule most likely to be altered during metabolism – and can 

perform both general P450 metabolism predictions and predictions for specific 

isoforms. 

2. GLORYx – is a computational tool used in cheminformatics and drug 

metabolism research to predict the formation of reactive metabolites. It 

simulates both Phase I and Phase II biotransformations of xenobiotics, such as 

drug candidates, by integrating tools like SMARTCyp and BioTransformer to 

identify likely sites of metabolism (SOMs) and generate potential metabolite 

structures. GLORYx is particularly useful for forecasting the formation of 

electrophilic or otherwise reactive species that could covalently bind to 

nucleophilic biological macromolecules like proteins or DNA – an important 

aspect in early drug development for assessing metabolic liability and toxicity 

risks. 

3. MetaSite – Another powerful tool for predicting metabolic changes in 

molecules. It also utilizes a metabolism database and can forecast potential sites 
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of metabolism for cytochrome P450. It is particularly useful in the study of 

molecules with potential toxicity or metabolic stability issues. 

4. ADMET Predictor – A comprehensive tool for predicting ADMET properties 

(absorption, distribution, metabolism, excretion, and toxicity), including P450 

metabolism. This tool allows not only metabolism prediction but also a more 

detailed assessment of a molecule’s potential toxicity. 

5. PharmacoPy – Another tool for predicting molecular metabolism, helping to 

identify which regions of a molecule may undergo metabolic transformations 

as a result of P450 interactions. It can be used to detect potentially bioactive or 

toxic metabolites. 

6. Derek Nexus – Specialized in toxicity and bioactivation prediction, particularly 

for molecules metabolized via P450 enzymes. It is valuable for identifying 

potentially hazardous metabolites at early stages of molecular development. 

These tools not only predict metabolic sites but also assess other important 

characteristics of the molecules. 

 

3.2 Results of predicting possible metabolic pathways of the anticonvulsant 

Epirimil using the XenoSite 

Phase I enzymes play a key role in drug biotransformation, catalyzing over 90% 

of metabolic reactions associated with FDA-approved drugs. 

These enzymes facilitate a wide range of chemical transformations, resulting in 

metabolites with significant structural diversity. 

To systematize this diversity, a unified annotation scheme has been proposed, 

which simultaneously identifies the sites of metabolism (SOMs) and classifies the 

types of reactions. Within this scheme, all reactions are divided into five key 

categories: 

1. Stable oxidation – A type of phase I metabolic reaction in which an atom or 

group of atoms in a molecule is oxidized without forming chemically unstable 

or reactive intermediates. 
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2. Unstable oxidation – A phase I metabolic reaction in which reactive or unstable 

intermediates are formed, which may be toxic or biologically hazardous. 

3. Dehydrogenation – A process involving the removal of hydrogen atoms (H) 

from a molecule. This reaction is often catalyzed by cytochrome P450 

enzymes. 

4. Hydrolysis – A reaction that involves the cleavage of a chemical bond through 

the addition of water (H₂O). 

5. Reduction – A metabolic reaction in which a molecule gains electrons or 

hydrogen atoms, resulting in the reduction of the oxidation state of certain 

functional groups. 

These five classes encompass 21 types of phase I reactions, which collectively 

account for 92.3% of all documented metabolic transformations in our database. 

The result of the XenoSite calculation is the fragments of the Epirimile 

molecule or other atomic sites of the molecule - the sites of metabolism (SOM) – that 

are primarily transformed by the P450 system. The results of the prediction for 

Epirimil shown in Fig. 3.1 

  

 



36 

 

 

Fig. 3.1 Results of predicting possible pathways of Epirimil metabolism using the 

online service XenoSite 

A high probability of stable oxidation of the sulfur atom in two steps was 

predicted: the formation of mono- (I) and disulfoxide (II) N-(3,4-dimethoxyphenyl)-

2-[2-methyl-6-(2-pyridyl)pyrimidin-4-yl]sulfinyl-acetamide. In addition, stable 

oxidation is possible by the formation of N-oxide at the pyridine substituent at 

position 6 (III). The stable oxidation reaction leads to the formation of more polar and 

stable metabolites that are easily excreted from the body and do not cause toxicity, 

which is a key difference from unstable oxidation. 

In the first phase of metabolism, unstable oxidation of the methoxy groups at 

the 3 and 4 positions of the phenyl radical is likely to occur through oxidative O-

dealkylation catalyzed by oxidoreductases, resulting in the formation of O-

dealkylated derivatives – N-(4-hydroxy-3-methoxy-phenyl)-2-[2-methyl-6-(2-

pyridyl)pyrimidin-4-yl]sulfanyl-acetamide (IV) or N-(3,4-dihydroxyphenyl)-2-[2-

methyl-6-(2-pyridyl)pyrimidin-4-yl]sulfanyl-acetamide (V).  

The conversion scheme of metabolism is shown in Fig. 3.2. 

One of the most probable directions of metabolism is the hydrolysis reaction 

under the action of hydrolases to form two products - 2-[2-methyl-6-(2-

pyridyl)pyrimidin-4-yl]sulfanylacetic acid (VI) and 3,4-dimethoxyaniline (VII) (Fig. 

3.2). 

Dehydrogenation and reduction reactions are not predicted. 
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Fig. 3.2 Main directions of Epirimil metabolism predicted by XenoSite 

Despite substantial resource investment, approximately 40% of drug 

candidates are terminated due to toxicity, frequently caused by interactions between 

electrophilic drugs or their metabolites and nucleophilic biological macromolecules 

such as DNA and proteins. For Epirimil, the formation of electrophilic metabolites 

capable of interacting with nucleophilic DNA is not predicted. 

Glucuronide formation at the first position of the pyridine ring is also possible, 

catalyzed by uridine diphosphate glucuronosyltransferase (UGT) (Fig. 3.4).  

 

Fig. 3.4 SOM of UGT conjugation 

 



38 

It should be noted that no epoxidation sites were identified, and the likelihood 

of epoxide formation is low. Epoxides are common reactive metabolites formed by 

cytochrome P450 enzymes and are often associated with drug toxicity due to their 

ability to covalently bind to proteins. 

 

Conclusions for Chapter 3 

1. The metabolism of the anticonvulsant compound Epirimil was predicted using 

the XenoSite web tool, which provided insights into the most probable sites of 

metabolism (SOMs) catalyzed by cytochrome P450 enzymes. 

2. The most likely metabolic transformations include stable oxidation of the sulfur 

atom (leading to sulfoxide and disulfoxide derivatives), N-oxidation at the 

pyridine ring, and hydrolytic cleavage of the acetamide bond. 

3. Unstable oxidation, primarily oxidative O-dealkylation of methoxy groups on 

the phenyl ring, is also predicted, potentially forming catechol-like metabolites.  

4. The formation of glucuronide conjugates via UGT enzymes is possible, 

indicating a potential phase II detoxification pathway. 

5. No dehydrogenation or reduction reactions were predicted, and the formation 

of epoxides, which are commonly associated with drug toxicity, is considered 

unlikely. Importantly, no formation of electrophilic or DNA-reactive 

metabolites was predicted, suggesting a favorable metabolic safety profile for 

Epirimil. 
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CHAPTER 4 

PREDICTING DIFFERENT TYPES OF EPIRIMIL TOXICITY 

 

Assessment of Absorption, Distribution, Metabolism, Excretion, and Toxicity 

(ADMET) properties of a compound represents a critical phase in the drug 

development process. Before a candidate compound proceeds to clinical trials, its 

ADMET profile must be carefully evaluated [70]. Traditionally, toxicity assessments 

are carried out using animal experiments, as was done in our study for the 

investigational compound Epirimil (described in Section 2). However, in silico 

toxicity prediction provides a rapid and cost-effective alternative to animal testing, 

relying on known toxicity data to train models capable of forecasting the toxic 

potential of new compounds [71]. Despite these advances, mechanistic toxicity 

prediction remains an evolving field, and gaining such insights is crucial for drug 

development. A single compound may affect multiple toxicity endpoints. Moreover, 

off-target interactions with proteins can lead to binding with various targets of 

different affinities, potentially activating diverse signaling pathways or interfering 

with distinct biological functions. Disruption of these interconnected signaling or 

functional pathways may result in synergistic or antagonistic systemic effects, 

extending across organs, tissues, and cellular levels, and potentially contributing to 

severe toxicity profiles [72]. 

 

4.1 Determination of the Lethal dose of the anticonvulsant agent Epirimil  

The ProTox platform integrates molecular similarity, fragment propensity, key 

structural features, and machine learning (including fragment-based CLUSTER 

cross-validation), encompassing 61 prediction models for endpoints such as acute 

toxicity, organ toxicity, molecular initiating events, metabolic effects, adverse 

outcomes (Tox21), and toxicity targets. 

The novelty of the ProTox webserver lies in its multi-layered toxicity 

classification system, which includes oral toxicity (e.g., acute toxicity in rodents), 

organ toxicity (e.g., hepatotoxicity), classical toxicological endpoints (e.g., 
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mutagenicity, carcinogenicity, cytotoxicity, immunotoxicity via B-cell proliferation 

inhibition), molecular initiating events (MOEs), adverse outcome pathways (AOPs), 

and toxicity targets. This offers valuable insights into the possible molecular 

mechanisms underlying toxic responses. 

According to the ProTox-predicted toxicity for the antiepileptic agent 

“Epirimil,” the estimated oral toxicity was found to be 1000 mg/kg, which correlates 

with the experimentally determined toxicity in animals. The results are shown in 

Figure 4.1. 

 
Fig. 4.1 Results of toxicity of the anticonvulsant agent Epirimil 

The obtained results prove the possibility of using this program as a preliminary 

toxicity prediction, since it does not give overly false results. 

 

4.2 Prediction of Epirimil toxicity by various biological or toxicological 

parameters 

The ProTox-II Radar Plot tool allows the creation of a toxicity radar chart, 

which is used for visual representation of predicted toxicity of a chemical compound 

across various biological or toxicological parameters. In the radar chart, each axis 

corresponds to a specific type of toxicity or biological activity (e.g., hepatotoxicity, 

carcinogenicity, mutagenicity, etc.). It displays the probability (in percentages or via 

color gradients/vector lengths) of a positive toxicity outcome compared to the average 

toxicity level within the corresponding compound class. The closer a point is to the 

edge of the radar, the higher the likelihood of toxicity for that parameter. Conversely, 
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the further away to the center, the lower the probability of toxic effects. This tool can 

be used for rapid toxicity risk assessment during in silico analysis, especially in the 

screening of novel bioactive compounds in pharmacology and chemistry. 

The toxicity radar chart of Epirimil is visualised to the figure 4.2 

 

Fig. 4.2 The toxicity radar chart of Epirimil 

 

Describing the diagram, it is worth noting that the blue line (with dots) 

represents the molecule under study; the orange zone is the average toxicity values 

for the class of active molecules. Accordingly, the further away from the center a 

point is located, the higher the probability of toxic activity. 

As seen from the toxicity radar, none of the parameters exceed the diagram's 

boundaries. Parameters with a high probability of toxicity (60% and above) include: 

Hepatotoxicity – 59%, with a likely inhibition or induction of the enzyme CYP2E1 

(64%), which may affect drug metabolism. The probability of negative impact on the 
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nervous system is Neurotoxicity – 49%. Potential interaction with voltage-gated 

sodium channels (VGSC) – ~45% and NADH-quinone oxidoreductase (NADHOX) 

– ~40% is also observed. BBB permeability – 60%, which is essential for a drug 

targeting the central nervous system (CNS). 

Low probability of toxicity (<30%) is noted for сarcinogenicity, Mutagenicity, 

Immunotoxicity, and сytotoxicity, suggesting a low risk of carcinogenic, mutagenic, 

or cytotoxic effects.  

 

Fig.4.3 Toxicity model report of Epirimile 

Therefore, the molecule shows a moderate probability of hepatotoxicity and 

neurotoxicity, as well as potential interaction with key metabolic enzymes (CYPs). 
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The risks of carcinogenicity, cytotoxicity, and mutagenicity are low, which is 

certainly a positive aspect. 

 

Conclusions for Chapter 4. 

1. The in silico toxicity prediction of the investigational compound Epirimil using 

the ProTox-II platform provided valuable insights into its potential biological 

safety profile. The predicted oral toxicity (LD₅₀) of 1000 mg/kg corresponds 

well with experimental data, supporting the reliability of the ProTox model as 

a preliminary screening tool. 

2. The radar toxicity plot indicated no extreme toxicity risks, with most 

parameters remaining within acceptable probability ranges. Notably, Epirimil 

demonstrated a moderate likelihood of hepatotoxicity (59%) and neurotoxicity 

(49%), with a potential effect on metabolic enzymes, particularly CYP2E1 

(64%). These findings may suggest the need for careful monitoring of liver 

function and CNS-related effects during further preclinical and clinical 

development. 

3. Importantly, the molecule exhibited low predicted risks for carcinogenicity, 

mutagenicity, cytotoxicity, and immunotoxicity – key indicators for drug safety 

– thus enhancing its potential as a therapeutic candidate. 
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CONCLUSIONS 

1. The in silico prediction of Epirimil metabolism using the XenoSite web tool 

identified key metabolic pathways involving cytochrome P450 enzymes, including 

stable sulfur oxidation, N-oxidation of the pyridine ring, and hydrolytic cleavage 

of the acetamide bond. 

2. Potential phase I transformations also include oxidative O-dealkylation of methoxy 

groups on the phenyl ring, possibly leading to catechol-type metabolites, while 

phase II conjugation via glucuronidation is likely, indicating possible 

detoxification routes. 

3. No dehydrogenation, reduction, or formation of electrophilic or DNA-reactive 

metabolites were predicted, and the risk of toxic epoxide formation appears 

minimal, suggesting a favorable metabolic safety profile. 

4. Toxicity prediction using the ProTox-II platform estimated an oral LD₅₀ of 1000 

mg/kg for Epirimil, which corresponds well with available experimental data and 

supports the reliability of the model for preliminary risk assessment. 

5. The radar toxicity analysis revealed no parameters exceeding critical thresholds; 

however, moderate probabilities of hepatotoxicity (59%) and neurotoxicity (49%) 

were identified, along with a potential effect on CYP2E1 activity (64%). 

6. Epirimil demonstrated low predicted risks for carcinogenicity, mutagenicity, 

cytotoxicity, and immunotoxicity, which are key indicators of drug safety and 

support its further development as a potential therapeutic agent. 
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«15» May 2025 year 

 



Ф А2.2.1-91-287 

ВИТЯГ 

з протоколу засідання кафедри фармацевтичної хімії 

№ 14 від 16 травня 2025 р. 

Засідання проводилось з використанням ZOOM технологій з 12 год. 05 хв. по 12 

год. 50 хв.  

Чисельний склад кафедри: 16 науково педагогічних працівників, з них присутні 

– 16 осіб. 

ПРИСУТНІ: зав.каф. проф. Георгіянц В.А., професори: Баюрка С.В.,  Перехода 

Л.О., Северіна Г.І.,  Сидоренко Л.В., доценти: Амжад Абу Шарк І., Бевз Н.Ю., 

Віслоус О.О., Головченко О. С., Гриненко В.В.,  Кобзар Н.П., Михайленко О.О., 

Петрушова Л.О., Рахімова М.В., Яременко В.Д., ас. Григорів Г.В.; аспіранти: 

Асмолов В. Є., Гончар О.О., Гуріна В. О.,  Коптєлов А. С., Куцанян А. А., Мураль 

Д. В., Сайфудінова Р. П., Сулейман Р. М., Суржиков І.О. 

ПОРЯДОК ДЕННИЙ:  

Звіт про стан виконання кваліфікаційної роботи здобувача вищої освіти 

фармацевтичного факультету, Фм20(4,10д) англ 01 групи, спеціальності «226 

Фармація, промислова фармація», освітньої програми «Фармація» Муад ТАЛАЛ 

на тему: «Дослідження можливих напрямків біотрансформації та токсичності 

нового протисудомного агента похідного піримідин-4-тіону». 

СЛУХАЛИ: доповідь здобувача вищої освіти здобувача вищої освіти 

фармацевтичного факультету, Фм20(4,10д) англ 01 групи, спеціальності «226 

Фармація, промислова фармація», освітньої програми «Фармація» Муад ТАЛАЛ 

на тему: «Дослідження можливих напрямків біотрансформації та токсичності 

нового протисудомного агента похідного піримідин-4-тіону», керівник – 

професор кафедри фармацевтичної хімії, д.фарм.н., проф. Ганна СЕВЕРІНА. 

УХВАЛИЛИ: рекомендувати кваліфікаційну роботу Муад ТАЛАЛ до 

офіційного захисту в Екзаменаційній комісії. 

 

 

Голова 

зав. кафедри, доктор фарм. наук,  

професор        Вікторія ГЕОРГІЯНЦ 

 

Секретар 

доцент, канд. фарм. наук     Марина РАХІМОВА 

 



Ф А2.2.1-32-042 

 

НАЦІОНАЛЬНИЙ ФАРМАЦЕВТИЧНИЙ УНІВЕРСИТЕТ 
 

ПОДАННЯ 

ГОЛОВІ ЕКЗАМЕНАЦІЙНОЇ КОМІСІЇ 

ЩОДО ЗАХИСТУ КВАЛІФІКАЦІЙНОЇ РОБОТИ 

 

Направляється здобувач вищої освіти Муад Талал до захисту кваліфікаційної роботи 

за галуззю знань 22 Охорона здоров’я 

спеціальністю 226 Фармація, промислова фармація 

освітньою програмою Фармація 

на тему: «Дослідження можливих напрямків біотрансформації та токсичності нового 

протисудомного агента похідного піримідин-4 тіону» 

 

Кваліфікаційна робота і рецензія додаються. 

 

Декан факультету _______________________ / Микола ГОЛІК / 
 

 

Висновок керівника кваліфікаційної роботи 

 

Здобувач вищої освіти Муад Талал виконав роботу на сучасному рівні. За період 

виконання кваліфікаційної роботи проявив високий рівень теоретичної підготовки. 

Кваліфікаційна робота викладена послідовно, грамотно, висновки коректні та логічні, 

витікають зі змісту роботи. Кваліфікаційна робота Муад Талал може бути рекомендована до 

захисту в Екзаменаційній комісії. 

 

Керівник кваліфікаційної роботи 

 

______________    Ганна СЕВЕРІНА 

 

«13» травня 2024 р.  

 

 

Висновок кафедри про кваліфікаційну роботу 

 

Кваліфікаційну роботу розглянуто. Здобувач вищої освіти Муад Талал допускається до 

захисту даної кваліфікаційної роботи в Екзаменаційній комісії. 

 

Завідувачка кафедри 

фармацевтичної хімії 

 

______________    Вікторія ГЕОРГІЯНЦ 
 

 

«16» травня 2025 року  

 



 

 

 

 

 

 

 

 

 

Qualification work was defended 

of Examination commission on  

« __ » __June__ 2025 year 

With the grade _________________________ 

Head of the State Examination commission, 

DPharmSc, Professor 

________________ / Volodymyr YAKOVENKO / 

 


