FULL PAPER

Assessment of the Phenolics Content in *Epilobium angustifolium* and *Epilobium hirsutum* Extracts and Their Pharmacological Activity

Kateryna Uminska, Michal Korinek, Liudas Ivanauskas, Mohamed El-Shazly, Victoriya Georgiyants, Yu-Li Chen, Monu Kumar Shukla, Sedin Renadi, Tsong-Long Hwang, Fang-Rong Chang, Olha Mykhailenko

First published: 13 May 2025

https://doi.org/10.1002/ardp.202400765

Citations: 1

Kateryna Uminska and Olha Mykhailenko contributed equally to this study.

ABSTRACT

The recent outbreak of Omicron strains of coronavirus disease urged the search for novel treatments from natural products such as *Epilobium* species. The present work reports a comparative HPLC-DAD study of the polyphenolic composition of the crude extracts of *Epilobium angustifolium* and *Epilobium hirsutum*. Oenothein B, gallic acid, hyperoside, and isoquercitin were the dominant phenolic compounds. *E. hirsutum* methanol extract showed a high radical scavenging activity as demonstrated by the HPLC-ABTS assay due to its richness in phenolic compounds. The polysaccharide-rich extracts and water extracts of *E. hirsutum* showed potent anti-coronavirus SARS-CoV-2 activity against the Omicron strain at 10 μ g/mL with inhibition percentages of 38.4% and 46.1%, respectively. In contrast, the methanol (50% v/v) extract was inactive. Rutin and chlorogenic acid docked well into the binding pocket of the coronavirus spike protein. Emerging evidence suggests that suppressing excessive neutrophilic inflammation during the late stage of coronavirus infection benefits patients' survival. The methanol extracts of both plants completely inhibited fMLF/CB-induced elastase release in human neutrophils at 10 μ g/mL (IC $_{50}$ 2.44 μ g/mL), while the water extract showed an IC $_{50}$ of 5.67 μ g/mL. While several compounds docked well into the spike protein, the major and marker compound oenothein B showed promising in vitro anti-coronavirus activity with an IC $_{50}$ of 6.08 μ M in hACE2-overexpressing HEK293 cells, mimicking the entry of wild-type SARS-CoV-2 into human host cells. The results indicated that *E. hirsutum* might be helpful in the treatment of coronavirus infections and related inflammatory syndromes.

Conflicts of Interest

The authors declare no conflicts of interest.

Open Research

References

Citing Literature