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Abstract: This study aims to identify active compounds of Arcangelisia flava, which can potentially 

inhibit SARS-CoV-2 MPro, through in silico studies. Molecular docking was carried out on 11 primary 

known metabolites of A. flava against the SARS-CoV-2 MPro receptor with remdesivir as a reference 

compound. All the ligands were analyzed for their ADME profile using a combination of SwissADME 

and pkCSM. The toxicity profile of each ligand was then predicted by ProTox-II. The best docking 

results were shown by 6-hydroxyfibraurin with a difference in the free energy of binding 0.48 kcal/mol 

higher than remdesivir, while the highest similarity interaction with remdesivir was shown by berberine 

with 52.27%. All ligands showed relatively similar ADME profiles and acceptable drug-likeness 

properties, including toxicity. In conclusion, 6-hydroxyfibraurin has the potential as a SARS-CoV-2 

MPro inhibitor with acceptable ADME and toxicity profiles. Further in vitro and in vivo studies are 

needed to prove the compound's activity.  

Keywords: 6-hydroxyfibraurin; Arcangelisia flava; Covid-19; molecular docking; SARS-CoV-2 

MPro. 
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1. Introduction 

After peaking in the first trimester of 2021 [1], cases of coronavirus disease 2019 

(COVID-19) began to show signs of being under control in the final trimester of 2021 [2]. In 

addition to the ever-expanding global vaccination coverage [3], understanding the coronavirus 

that causes severe acute respiratory syndrome 2 (SARS-CoV-2) is another important 

component [4]. After the SARS-CoV-2 delta variant outbreak, which took many lives 

worldwide, especially in developing countries such as India and Indonesia [5], there were signs 

of a decline in the rate of cases and death rates worldwide. Nevertheless, there is always the 

possibility of the emergence of novel, more vicious variants in the future, and the world must 

be prepared to deal with it. One is developing complementary therapies to support vaccination 

campaigns, currently the first line of action in handling the COVID-19 pandemic [6]. 

The development of oral therapy for COVID-19 is the main focus of many researchers 

from various countries because it can complement the limitations of vaccination in distribution 

and administration [7]. Several therapeutic targets have been identified, and apart from spike 

protein and RNA-dependent RNA polymerase (RdRp) [8], the main protease of SARS-CoV-2 

(SARS-CoV-2 MPro) is one of the most attractive targets in the development of the COVID-19 

therapy [9,10]. The repurposing of several available drugs has been reported to interact with 

the enzyme and inhibit the replication and transcription process of SARS-CoV-2, including 

remdesivir, the reference compound for developing inhibitors for this target [11]. Moreover, 

after reporting on the potential of repurposing drugs [12] and novel drug compounds [13-15] 

as SARS-CoV-2 MPro inhibitors, the researchers turned their attention to one of the oldest 

sources of medication on earth: metabolites from medicinal plants [16]. 

The exploration of SARS-CoV-2 MPro inhibitors derived from natural ingredients is still 

a fascinating topic. However, several medicinal plants have been reported for their activity 

[17], including Curcuma longa [18], Andrographis paniculata [19], Nigella sativa [20], 

Glycyrrhiza glabra [21], Withania somnifera [22], Artemisia annua [23], Camellia sinensis 

[24], and Garcinia mangostana [25]. However, these plants have yet to be officially used in 

the therapy of COVID-19, even though they have been shown in silico and in vitro activities, 

except as complementary therapy [26]. Naturally, these circumstances encourage scientists to 

investigate medicinal plants with the greatest potential for acting as MPro inhibitors of SARS-

CoV-2. Furthermore, after the activities of various medicinal plants were investigated and 

reported by researchers around the world, it turns out that there is one medicinal plant from 

Indonesia whose potential as a SARS-CoV-2 MPro inhibitor has never been studied: 

Arcangelisia flava. 

Arcangelisia flava or yellow root (Indonesian: 'akar kuning') is a medicinal plant from 

Indonesia known to have various biocidal activities such as antimicrobial [27] and antifungal 

[28]. The stems contain various alkaloids, such as berberine [29], and diterpenoids, such as 

fibraurin [30], with broad activity potential. However, no studies have reported the potential of 

various metabolites of A. flava as SARS-CoV-2 MPro inhibitors. Thus, this study aims to 

determine which A. flava active substance can most suppress SARS-CoV-2 MPro. Several web 

servers were used to determine the properties of these metabolites in terms of absorption, 

distribution, metabolism, excretion, and toxicity (ADMET) after the molecular docking 

method was applied in an in silico manner. In the final step, predictions of the toxicity of these 

metabolites were carried out to determine the probability of toxic properties and predicted LD50 

of each metabolite. 
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2. Materials and Methods 

2.1. Hardware and software. 

The hardware and software (including three web servers: SwissADME, pkCSM, and 

ProTox-II) used in this study were the same as those used in our previous study [31]. 

2.2. Ligands preparation. 

Eleven known secondary metabolites were reported in the roots of A. flava used as test 

ligands [27,32], while the reference ligand was remdesivir [33], as shown in Table 1. The stages 

of the ligand preparation process were carried out in the same way as in our previous study 

[31]. 

Table 1. The two-dimensional structure of all test and reference ligands. 

Code Name Two-dimensional structure 

Ref Remdesivir 

 
1 2-dehydroaxyarcangelisinol 

 
2 6-hydroxyarcangelisin 

 
3 6-hydroxyfibleucin 

 
4 6-hydroxyfibraurin 
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Code Name Two-dimensional structure 

5 Berberine 

 
6 Columbamine 

 
7 Fibleucin 

 
8 Fibraurin 

 
9 Jatrorrhizine 

 
10 Palmatine 

 
11 Tinophyllol 

 

2.3. Receptor preparation. 

The receptors used was SARS-CoV-2 MPro (PDB ID 6LU7) from Protein Data Bank's 

website with a co-crystal ligand of N-[(5-methylisoxazol-3-yl)carbonyl]alanyl-l-valyl-N~1~-

https://doi.org/10.33263/LIANBS142.070
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((1R,2Z)-4-(benzyloxy)-4-oxo-1-{[(3R)-2-oxopyrrolidin-3-yl]methyl}but-2-enyl)-l-

leucinamide [9]. The receptor contains the single chain of the main protease monomer from 

SARS-CoV-2 with a resolution of 2.16 Å. 

2.4. Molecular docking. 

The docking protocol validation was carried out using the redocking method reported 

by our previous study using the same receptor [14], with the same stages as our previous study 

[31]. The observed parameter was a root-mean-square deviation (RMSD), which was not more 

than 2 Å. The docking procedure was conducted five times, and the average and deviation 

values were used to compute the free energy of binding (ΔG; kcal/mol) value that was obtained 

[34]. 

The grid box sizes and locations at the receptor were identical for all test and reference 

ligands, and docking was carried out in the same manner as validation. The gathered data was 

categorized into two parameters: ΔG and ligand-receptor interactions. The latter was 

determined by calculating the average similarity percentage between the interactions and the 

interactions between the interacting amino acids. Similar to the validation procedure, there 

were five iterations of the docking process. Each test ligand's two properties were compared to 

remdesivir to see if they were similar, and then the results were created in a two-dimensional 

graph, as shown in our earlier study [35]. 

2.5. ADMET prediction. 

The ADMET properties of each test ligand were predicted by using the procedures 

described in our earlier study [36], which used multiple ADMET prediction web servers to 

produce thorough results. OpenBabel 3.1.1 was used to convert each test ligand into its standard 

SMILES format. The ADMET property prediction findings were then presented graphically, 

as demonstrated by Sukardiman et al. [37]. 

3. Results and Discussion 

3.1. Molecular docking. 

The redocking procedure yielded an RMSD value of 1.981 Å for the 6LU7 receptor. 

This demonstrated that the receptor's docking procedure was appropriate for docking. Figure 1 

shows the visual representation of ligand overlays from redocking with co-crystal ligands from 

crystallographic data.  

 
Figure 1. Overlays of redocking ligands (blue) with co-crystal ligands from X-crystallography data (green) at 

receptors 6LU7 with RMSD 1.981 Å. 
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Twenty-five amino acids interact at the 6LU7 receptor, nine forming hydrogen bonds. 

Table 2 displays the metrics that were noticed during the validation process, which include 

amino acid interactions and ΔG, in addition to the grid box's size and coordinates. This result 

is similar to our previous report because the protocol used is the same [34] except for the 

exhaustiveness and number of modes, which were increased to 128 and 20, respectively, to 

improve the accuracy of docking results [38]. 

Table 2. Results of the validation process. 

Parameters Value 

PDB ID 6LU7 

Co-crystal 

ligand 

N-[(5-methylisoxazol-3-yl)carbonyl]alanyl-l-valyl-N~1~-((1R,2Z)-4-(benzyloxy)-4-oxo-1-{[(3R)-2-

oxopyrrolidin-3-yl]methyl}but-2-enyl)-l-leucinamide 

Grid box size 

(Å) 

40 x 54 x 40 

Grid box 

position 

x: -9.732 

y: 11.403 

z: 68.483 

RMSD (Å) 1.981 

ΔG (kcal/mol) -8.12 ± 0.04 

Amino acid 

residues 

24-Thra 

25-Thra 

26-Thra 

41-Hisb 

49-Metb 

54-Tyra 

140-Phec 

141-Leud 

142-Asna 

143-Glyc 

144-Sera 

145-Cysa 

163-Hisc 

164-Hisc 

165-Metc 

166-Gluc 

167-Leub 

168-Prob 

172-Hisc 

187-Aspa 

188-Arga 

189-Glnc 

190-Thrc 

191-Alab 

192-Glna 
a Van der Waals interaction; b Alkyl/Pi-alkyl interaction; c Hydrogen bond; d Pi-Pi T-shaped/Pi-Pi 

Stacked/Amide-Pi stacked. 

Berberine, one of the primary metabolites of A. flava, known to have various activities, 

was not the ligand with the best docking results. The ΔG value of berberine was -7.14±0.05 

kcal/mol, while remdesivir was -8.38±0.08 kcal/mol or a difference of 1.24 kcal/mol. 

Meanwhile, the ligand with the closest ΔG value to remdesivir was 6-hydroxyfibraurin with -

7.9±0 kcal/mol, or only 0.48 kcal/mol difference. 6-hydroxyfibraurin also revealed a moderate 

similarity of the ligand-receptor interaction to remdesivir at 50% or half of the interaction. This 

value is slightly lower than berberine as a ligand, with the highest similarity of 52.27%. 

Uniquely, the four ligands (6-hydroxyarcangelisin, fibraurin, 6-hydroxyfibleucin, and 

palmatine) had 0% similarity, indicating that they interact on the different binding sites with 

remdesivir. Palmatine also showed the most considerable ΔG difference to remdesivir with 

2.04 kcal/mol, making it the less favorable ligand at the binding site. For easier-to-understand 

https://doi.org/10.33263/LIANBS142.070
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observation, the values of these two parameters for every ligand were then shown on a two-

dimensional graph, as presented in Figure 2. 

 
Figure 2. The two-dimensional graph between the difference in the value of ΔG and the % similarity of ligand-

receptor interactions compared to reference ligand. 

3.2. ADMET prediction. 

Five criteria were used to categorize the three web servers' predictions of ADMET 

properties: toxicity, distribution, metabolism, excretion, and absorption. In Figure 3, absorption 

parameters were acquired from prediction utilizing SwissADME and pkCSM to various 

factors, such as water solubility, ESOL Log S, Ali Log S, MLOGP, XLOGP3, MLOGP, 

Silicos-IT Log P, consensus Log P, and implicit Log P (iLOGP). The findings demonstrate that 

compound 9 (jatrorrhizine) had the highest water solubility compared to the other ligands, 

whereas compound 4 (6-hydroxyfibraurin) had the lowest water solubility. 

 
Figure 3. Prediction of test ligand absorption parameters with SwissADME and pkCSM. The highest and lowest 

water solubility prediction was shown by compounds 9 and 4, respectively. 

As shown in Figure 4, the results obtained with pkCSM for distribution parameters 

reveal fluctuations in numerous parameters, including % unbound, blood-brain barrier (BBB) 

permeability, central nervous system (CNS) permeability, and volume of distribution at steady-

state (VDss). Most of the ligands (7 out of 11) showed negative BBB permeability values, and 

all of them showed negative CNS permeability values, indicating that the distribution of the 

ligands in the BBB and CNS tissues was relatively high. The ligand with the lowest BBB 

permeability value was compound 8 (fibraurin), while the lowest CNS permeability value was 

compound 4. The distribution characteristics of all test ligands were generally comparable, with 

https://doi.org/10.33263/LIANBS142.070
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the exception of the two compounds, which were anticipated to enter the BBB and CNS more 

easily, respectively. 

 
Figure 4. Prediction of test ligand distribution parameters with pkCSM. The test ligand predicted to have been 

the easiest to penetrate BBB and CNS was compounds 8 and 4, respectively. 

The results of using SwissADME to measure metabolism parameters show that most 

test ligands (7 of 11) did not interact to inhibit several types of cytochromes, except compounds 

5 (berberine), 6 (columbamine), 9, and 10 (palmatine), which could inhibit 2-3 types of 

cytochromes P450 isoform, as presented in Figure 5. The types of isoform include cytochrome 

P450 1A2 (CYP1A2), 2D6 (CYP2D6), and 3A4 (CYP3A4). Three ligands can simultaneously 

inhibit compounds 5, 6, and 9. Meanwhile, other compounds have practically low potential to 

become cytochrome P450 inhibitors. 

 
Figure 5. Prediction of test ligand metabolism parameters with SwissADME. Compounds 5, 6, and 9 had the 

most chance as a cytochrome P450 inhibitor among other test ligands against three types of cytochrome P450 

isoform: CYP1A2, CYP2D6, and CYP3A4. 

Just one parameter was noted for excretion parameters: the total clearance from 

pkCSM, as Figure 6 illustrates. There was a significant difference in the total clearance value, 

in which compound 8 only had a total clearance of 0.468 log mL/min/kg, slightly smaller than 

compound 2 with 0.487 log mL/min/kg. In contrast, there are four compounds with a total 

clearance value above 1.2 log mL/min/kg: compounds 5, 6, 9, and 10. Among the four, the 

highest total clearance value is indicated by compound 5 with 1.278 log mL/min/kg. 

 
Figure 6. Prediction of test ligand excretion parameters with pkCSM. Compound 8 had the lowest total 

clearance with 0.468 log mL/min/kg, while the ligand with the highest total clearance was compound 5 with 

1.278 log mL/min/kg. 

https://doi.org/10.33263/LIANBS142.070
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Lastly, as seen in Figure 7, the predicted LD50 values and the toxicity parameters were 

estimated using ProTox-II and toxicology model parameters for various target types and their 

probabilities. The first exciting thing was that each compound had at least a reasonably high 

probability (≥0.7) against one model: immunotoxicity. There were only two compounds with 

a probability of immunotoxicity of 0.7: compounds 7 (fibleucin) and 8, the lowest compared 

to other compounds. In addition, compounds 5, 6, 9, and 10 also had probabilities in the range 

of 0.73-0.87 to another toxicity model: mitochondrial membrane potential (sr_mmp). 

Compound 5 was the only one with a probability of the cytotoxicity (cyto) and aryl 

hydrocarbon receptor (nr_ahr) model, with a probability of 0.96 and 0.87, respectively. The 

predicted LD50 values for all compounds were not too wide, between 200 and 555 mg/kg. There 

were four compounds with the lowest LD50 values: compounds 5, 6, 9, and 10, and all four 

belong to predicted toxicity class III, which was toxic if swallowed. 

 
Figure 7. Prediction of test ligand toxicity parameters with ProTox-II. Compounds 7 and 8 show a moderate 

predicted value of LD50 (555 mg/kg) with the lowest probability (0.7) to the immunotoxicity model. Compounds 

5, 6, 9, and 10 show the lowest predicted value of LD50 with 200 mg/kg, while compound 5 shows a high 

probability of the toxicity model with the highest number (four targets). 

Despite its potential, research on A. flava needs to be more reported. One of the reasons 

is the toxic nature of some of its metabolites [39], which was confirmed in the results of this 

study. In Indonesia, using plant parts is explicitly prohibited for traditional medicine and health 

supplements [40]. However, research on its active metabolites is still being reported, especially 

for various infectious diseases [41], as reported by Maryani et al. [42]. Apart from not all of its 

toxic metabolites, some have high potential as antivirals, as summarized by Feng [43]. 

Therefore, developing this plant, especially for the SARS-CoV-2 MPro inhibitor, becomes 

rational, considering that there is very little data related to the following plants to deal with 

viral infections. 

In silico studies of the metabolites of A. flava have not been widely reported, 

particularly concerning their potential as an antiviral. For example, research by Levita et al. 

[44] reported berberine as one of the metabolites of A. flava with the best docking results as 

inducible nitric oxide synthase inhibitors with ΔG of -7.9 kcal/mol, which was later 

corroborated by reports from Kolina et al. [45] on similar receptors. In that study, fibraurin 

showed one of the least favorable docking results with an ΔG of -4.4 kcal/mol. Our previous 

study also reported potential anticancer metabolites of A. flava through inhibiting Src kinase, 

which reported berberine as the best metabolite with ΔG -9.0 kcal/mol [46]. Meanwhile, the in 

silico study of A. flava, as our study first reported an antiviral as a neuraminidase inhibitor, 

reported fibleucin as the metabolite with the lowest ΔG at -8.12 kcal/mol [47]. Apart from that, 

practically no other studies have reported the potential of A. flava as an antiviral with an in 

silico approach, so the results of this study will provide an excellent update on the development 
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of A. flava, mainly because this study also reported predictive properties of ADMET, which 

had not been previously reported. 

Two of the eleven metabolites studied stood out the most for different reasons: 6-

hydroxyfibraurin and berberine. If 6-hydroxyfibraurin stands out in its potential affinity, 

berberine has an advantage in the similarity of its interactions. However, there are several 

reasons why, between the two compounds, 6-hydroxyfibraurin has more potency, especially 

when considering its ADMET properties. 6-hydroxyfibraurin tends to be less soluble in water 

but penetrates the BBB and CNS more easily than berberine. On the other hand, berberine can 

inhibit cytochrome P450, whereas 6-hydroxyfibraurin does not. The total clearance of 

berberine is more than two-fold greater than that of 6-hydroxyfibraurin. However, berberine 

has a higher probability of multiple toxicity models, with an LD50 nearly three times that of 6-

hydroxyfibraurin. Thus, it can be assumed that the toxicity potential of 6-hydroxyfibraurin is 

lower than that of berberine, which is confirmed by several studies reporting the toxicity of 

berberine [48-50]. On the other hand, no information on the toxicity of 6-hydroxyfibraurin or 

fibraurin as its non-hydrolyzed form has been reported. 

The limitation of this study is the small number of test ligands. One of the reasons is 

that the reported number of metabolites from the stem of A. flava is still low, as the most widely 

used plant part empirically [51]. The results of the review by Cheng et al. showed the presence 

of several other compounds, which were also reported to be present in A. flava [32]. However, 

the part of the plant from which the compound was obtained needed to be explained. This 

research can also be continued with molecular dynamics studies to determine the stability of 

the interactions shown for each compound. Subsequently, direct in vitro studies with SARS-

CoV-2 MPro and in vivo tests with test animal models need to be carried out to prove the validity 

and linearity of the results of the in silico studies that have been carried out. 

4. Conclusions 

In summary, of all the test ligands from A. flava, 6-hydroxyfibraurin showed the best 

potential as a SARS-CoV-2 MPro inhibitor. These compounds also exhibit varying properties 

of ADME that are still possible to develop and have the lowest relative toxicity. To demonstrate 

the potential and precise mechanism of these compounds as SARS-CoV-2 MPro inhibitors, 

additional in vitro and in vivo investigations are necessary. 
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