

Міністерство охорони здоров'я України
Міністерство освіти і науки України
Національний фармацевтичний університет
Кафедра фармацевтичної хімії
Кафедра загальної хімії
Українське товариство з медичної хімії

Міжнародна internet-конференція

Modern chemistry of medicines

7 листопада 2025 р.
м. Харків, Україна

Посвідчення Державної наукової
установи «Український інститут
науково-технічної експертизи та
інформації» № 850 від 26.12.2024 р.

Structural optimization of losartan as an approach to the design of new angiotensin II receptor antagonists

Tetiana Maltseva, Olga Golovchenko, Hanna Severina*

National University of Pharmacy, Kharkiv, Ukraine

**severina.ai@ukr.net*

Introduction. Arterial hypertension (AH) remains one of the leading causes of mortality worldwide. Even with the availability of effective medications, a considerable proportion of patients fail to achieve target blood pressure levels, which highlights the need for developing new molecules with improved therapeutic profiles [1]. One of the widely used agents for the treatment of hypertension is losartan – the first non-peptide antagonist of the angiotensin II type 1 receptor (AT₁). Since losartan requires metabolic activation, resulting in variability of the pharmacological effect, and other sartans (valsartan, candesartan, telmisartan) have their own drawbacks – such as low solubility, excessive lipophilicity, or limited bioavailability – this creates a strong rationale for rational structural optimization.

Materials and methods. Angiotensin II type 1 receptor antagonists (AT₁-blockers). BIOVIADraw and SwissADME software. Databases such as the Protein Data Bank (PDB) and DrugBank.

Results and discussion. Rational design was carried out in several directions. A bioisosteric replacement of the tetrazole ring with a triazole (LOZ-1) or 1,2,4-oxadiazole (LOZ-2) was performed to reduce the risks of tetrazole metabolism and idiosyncratic toxicity, and to fine-tune acidity and solubility. A bioisosteric substitution of the imidazole core with benzimidazole (telmisartan-like, LOZ-3) and 1,2,4-triazole (LOZ-4) was designed to enhance π -stacking within the receptor binding pocket, improve metabolic stability, and prolong the half-life. These modifications were made while maintaining the methylene bridge to the biphenyl fragment and introducing an ether linker ($-\text{CH}_2-\text{O}-$) to increase polarity (LOZ-5). A cyclopropyl group was introduced instead of the butyl substituent (LOZ-6), and a controlled biphenyl conformation was achieved by adding an ortho-fluoro substituent (LOZ-7) on the ring adjacent to the tetrazole to fix the non-planar twist that promotes optimal binding to the AT₁ site and may increase selectivity. An in silico analysis of seven rationally designed losartan derivatives was performed in comparison with the parent compound. The original losartan shows moderate solubility, a short duration of action, and CYP-mediated interaction risks. All designed analogues comply with Lipinski's rule of five and demonstrate acceptable pharmacokinetic properties. The molecular weight of the compounds ranges from 389 to 439 g/mol, and TPSA values from 90 to 110 Å². The best balance between lipophilicity and solubility was observed for LOZ-1 and LOZ-4 (LogP ≈ 3.3; LogS ≈ -4.5), whereas losartan has lower solubility (LogS ≈ -5.2). All compounds exhibit high gastrointestinal absorption and do not penetrate the blood–brain barrier. LOZ-1 and LOZ-2 do not inhibit CYP3A4, which reduces the risk of drug–drug interactions compared with losartan. LOZ-2 is characterized by the presence of a carboxylic acid fragment that may enhance AT₁ receptor affinity but slightly decreases solubility.

Conclusions. Among the obtained analogues, LOZ-1 shows the most favorable pharmacokinetic profile, while LOZ-2 exhibits higher potential activity due to the acidic fragment but lower solubility. Both compounds are promising candidates for further optimization and experimental evaluation.

References

1. Hengel FE, Sommer C, Wenzel U. Arterielle Hypertonie – Eine Übersicht für den ärztlichen Alltag [Arterial Hypertension]. *Dtsch Med Wochenschr*. 2022;147(7):414-428.
2. Al-Majed AR, Assiri E, Khalil NY, Abdel-Aziz HA. Losartan: Comprehensive Profile. *Profiles Drug Subst Excip Relat Methodol*. 2015;40:159-194.