
## DE NOVO DESIGN DRUG-LIKE MOLECULES WITH POTENCIAL ANTI- ALZHEIMER'S DISEASE PROPERTIES USING METHODS CHEMINFORMATICS

Gadyatskaya K.A., Redkin R.G. Shemchuk L.A., Chernykh V.P. The National University of Pharmacy, Kharkiv, Ukraine polovino4ka@mail.ru

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the deterioration of cognitive function and behavioral changes. Two main disease mechanism-based approaches are based on the involvement of two proteins, amyloid- $\beta$  protein (A $\beta$ ) and tau. A $\beta$  is the main constituent of senile plaques, and tau- is the main component of neurofibrillary tangles. Impairment of neuronal functions and loss of neurons A $\beta$  is generated from APP by two proteases,  $\beta$ -secretase and  $\gamma$ -secretase. A third protease,  $\alpha$ -secretase, which competes with  $\beta$ secretase for the APP substrate, interferes with the production of A $\beta$ . Therefore, three strategies to reduce A $\beta$  have been proposed: inhibition of  $\beta$ -secretase, inhibition of  $\gamma$ secretase and stimulation of  $\alpha$ -secretase.



Recently, several studies have suggested that many kinds of natural polyphenols (myricetin (Myr), morin (Mor), quercetin (Qur), kaempferol (Kmp), (+)-catechin (Cat) and (-)-epicatechin (epi-Cat)) may have anti-amyloidogenic effects. Another promising molecule approved by the FDA for the treatment of Alzheimer's disease is known earlier H<sub>1</sub>-histamine blockers Dimebon. We have tried to construct de novo drug-like molecules with potencial anti-Alzheimer's disease properties, containing both the indole moiety and the benzopyran nucleus, like natural compounds. In the first stage, we studied the QSAR for a known set of natural polyphenols using computational platform Molinspiration Cheminformatics, which allowed us to construct the correlation model to a number of molecular descriptors. In the second step, for focus screening libraries (I) in silico, predicted high anti protease activity to compounds (I) with over then 5 points of randomisation. More sensitive point is  $R_5$ , when  $R_5$  is CONH<sub>2</sub>. Thus, the proposed structures deserve attention for further research for potential anti-Alzheimer's drugs.