P-10
 Structure of Sodium 3-Benzylcarbamoyl-1-methyl-2,2-dioxo-1 H-2 ${ }^{6}$,1-benzothiazine-4-olate

Petrushova L.A., Ukrainets I.V., Gorokhova O.V.

National University of Pharmacy, Kharkiv, Ukraine, e-mail: uiv-2@mail.ru
Numerous studies of the spatial structure of derivatives of 1-R-4-hydroxy-2,2-dioxo$1 H-2 \lambda^{6}, 1$-benzothiazine-3-carboxylic acids - esters, hetaryl-, alkylamides and anilides carried out with the help of X-ray crystallographic analysis have shown that, as a rule, the thiazine nucleus that forms their base is in a "half-chair" conformation or in an intermediate conformation between a "twist-bath" and a "sofa"[1-3].

However, in the case of sodium 3-benzylcarbamoyl-1-methyl-2,2-dioxo-1H-2 $\lambda^{6}, 1-$ benzothiazine-4-olate obtained by crystallization from water a completely different result is observed. The dihydrothiazine ring of this compound unexpectedly appeared to be flat with the accuracy of $0.02 \AA$. The cyclic nitrogen atom has a planar configuration, the sum of bond angles centralized on it is 360°. The carbamide group of the substituent at $C(8)$ atom is coplanar with the endocyclic $\mathrm{C}(7)-\mathrm{C}(8)$ double bond (the torsion angle is $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-$ $\left.N(2) 5.5(6)^{\circ}\right)$. Apparently, it is stabilized by formation of the intramolecular hydrogen bond $\mathrm{N}(2)-\mathrm{H} \ldots \mathrm{O}(1)\left(\mathrm{H} . . \mathrm{O} 1.95 \AA \mathrm{~N}-\mathrm{H} . . . \mathrm{O} 136^{\circ}\right.$) and leads to lengthening the $\mathrm{C}(7)-\mathrm{C}(8)$ 1.405(6) \AA bond. The benzyl fragment is in ap-conformation in relation to the $\mathrm{C}(8)-\mathrm{C}(9)$ bond (the torsion angle is $\left.\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{C}(10)-177.9(3)^{\circ}\right)$, and the aromatic cycle is orthogonal to the plane of the carbamide fragment and turned towards the $\mathrm{N}(2)-\mathrm{C}(10)$ bond (the torsion angles are $\left.\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(11)-80.2(6)^{\circ} ; \mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(16) 104.4(5)^{\circ}\right)$. The steric repulsion between atoms of the methyl substituent and the bicyclic fragment causes lengthening the $\mathrm{C}(17)-\mathrm{N}(1)$ bond up to $1.502(9) \AA$ compared to its mean value $1.469 \AA$.

The coordination polyhedron of a sodium cation is a distorted octahedron. A pair of sodium cations is linked with two bridging anions
 by the chelated type coordinating by atoms $\mathrm{O}(2)$, $\mathrm{O}(3)$ and $\mathrm{O}(4)$. In the terminal each sodium atom is coordinated by $\mathrm{O}(1)$ atom of the third anion binding pairs of atoms of sodium and by a water molecule. As a result, the infinite polymer chain is formed in the crystal.
[1] Ukrainets, I.V.; Petrusova, L.A.; Dzyubenko, S.P. I/ Chem. Heterocycl. Comp. - 2013. - Vol. 49, No. 9. - P. 1378
[2] Ukrainets, I.V.; Petrusova, L.A.; Dzyubenko, S.P.; Liu, Y. //
Chem. Heterocycl. Comp. - 2014. - Vol. 50, No. 4. - P. 564.
[3] Ukrainets, I.V.; Petrusova, L.A.; Sim, G.; Bereznyakova, N.L. // Chem. Heterocycl. Comp. - 2015. - Vol. 51, No. 1. - P. 97.

